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INTRODUCTION 

Bitumen, according to the Association International 

Permanente des Congres de la route in Paris, is a mixture of 

hydrocarbons either of natural or of pyrogenous origin or a 

combination of both (frequently accompanied by their non-

metallic derivatives) which can be gaseous, liquid, semi­

solid or solid and which are completely soluble in carbon 

disulphide. 

Bituminous materials cover a large number of paving and 

non-paving materials. These materials are distributed in 

nature in various forms such as natural gas, petroleum, 

maltha, asphalt, coal, and rock asphalts. Asphalts from 

petroleum crudes, natural asphalts from Bermudez and Trini­

dad lakes and tars from coal are useful for highway paving 

purposes. Petroleum asphalts, however, are used more ex­

tensively than all other bituminous materials in highway con­

struction. 

Although bituminous materials have been known to man 

from very early times, their use in road construction is com­

paratively recent. It was in 1838 that these materials were 

used for the first time in the United States for sidewalks. 

In 1870 an experimental road was constructed in Newark, New 

Jersey. Success of this road resulted in the granting of a 
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patent to N. B. Abbott for laying asphalt pavement in 1871. 

Trinidad asphalt used in Washington, D. C., in 1876 was 

authorized by an act of Congress passed the same year. 

However some bituminous materials called "rock asphalt 

mastics" were sold in France in the 1790*s and used for sur­

facing floors, bridges and sidewalks, also to a limited ex­

tent for waterproofing purposes. 

In the early part of this century, petroleum asphalts 

for road construction were obtained from very few established 

sources. The boom in the motor vehicle industry affected 

both the use as well as manufacture of asphalts. Thus as­

phalts which once were obtained from few sources are now 

available from many sources and by a variety of refining 

methods. 

Development of motor vehicle, demanded good all-weather 

roads connecting almost all cities and rural areas. This re­

sulted in the development of an extensive rural and urban 

highway system. Asphalt therefore, which once was used al­

most exclusively in high type pavements for city streets 

prior to the motor vehicle age, was developed for the con­

struction of both rural and urban highways. In recent years 

the consumption of asphaltic materials for paving purposes 

have increased greatly in the United States. In 1919, only 
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half a million tons were used, whereas in 1958 asphalt con­

sumption rose to 15 million tons and is showing a steady in­

crease every year (9). 

Availability of funds and equipment for paving modern 

highways, the low cost of construction and the smooth riding 

surface characteristics provided by asphalt roads, have made 

imperative the development of better means and methods of 

testing the quality of asphalt and asphaltic mixtures. 

Asphalt roads have been looked upon with favor by many 

authorities in this country and abroad, due to their low cost 

of construction and maintenance. The asphalt industry, many 

asphalt technologists, and road or highway departments are 

therefore engaged in improving the quality of asphalt pave­

ments every day. 

Since asphalt is a chemically complex material, which 

varies with source of the petroleum crude and the refining 

process employed, its constituent and chemical composition is 

as yet not clearly nor completely understood. Petroleum 

crudes from different sources differ considerably in compo­

sition. Consequently, the asphalts secured from these crudes 

will also differ in many respects. Since the chemical compo­

sition of asphalts is as yet not fully understood, the engin­

eer must rely entirely upon the physical tests for asphalts. 
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Asphalt when mixed with mineral aggregates under speci­

fied conditions yields a paving mixture. Since the proper­

ties of the ingredients of paving mixtures cannot be deter­

mined accurately, the physical tests of asphalt, mineral ag­

gregate and paving mixture, along with the service behavior 

of existing pavements, are the only guides for paving engineer. 

Laboratory investigations are made on asphalt, mineral 

aggregate and asphaltic mixtures before the actual pavement 

is laid. Due to the unlimited number of variables found in 

the field, pavements laid with similar laboratory approved 

asphaltic concrete mixes might react differently to natural 

field conditions. In other words, natural weathering plays 

a vital role in the service behavior of a highway. Many as­

phalt pavements have shown cracking after a few years of 

service, but others constructed with almost similar materials 

stand up perfectly even after many years of service, under 

different field conditions. 

Studies of the asphalt recovered from pavements show 

hardening of asphalt in pavements. This hardening of asphalt 

is probably one of the causes of cracking or of other pave­

ment failures. 

To learn a little more about what occurs to the asphalt, 

the aggregate and to the asphalt-aggregate mixtures when the 

latter is subjected to severe laboratory treatments simulating 

field conditions, this investigation was undertaken. 
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REVIEW OF PREVIOUS WORK 

Types of Asphalt Hardening 

Asphalt generally increases in consistency with time, 

even at moderate temperatures. This increase in consistency 

is commonly referred to as "hardening". Asphalt hardening 

may either be reversible or irreversible or a combination of 

both (14, 49). 

Reversible hardening 

Reversible hardening may occur isothermally, but it does 

so without material loss and chemical change. This results 

from internal physical re-orientation and re-organization at 

the atomic, molecular and micelle levels of the components of 

asphalt. Reversible hardening could further be subdivided 

into two classes (14); 

(a) Strain hardening 

(b) Steric hardening. 

Strain hardening results from internal re-orientation 

caused by continuing deformation or strain. When the strain­

ing is stopped, the material reverts to its original consis­

tency by relaxation. 

Steric hardening also results from re-orientation but 

takes place without dimensional deformation. This takes place 

at constant temperature in high consistency asphalts, which 
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have been quickly chilled from a heated condition and it in­

creases with time to a limiting value. 

Irreversible hardening 

Irreversible hardening involves changes such as loss of 

material and chemical changes. Examples of hardening by loss 

of material are distillation of crude to bottoms for increas­

ing softening points and evaporation of diluent from cut­

back asphalts on a road bed. Air blowing of residuum and the 

oxidation of asphalts when weathering are examples of chemi­

cal changes. 

Factors Affecting Asphalt Hardening 

The following factors could contribute to the hardening 

of paving asphalts (1, 18, 20, 68, 69, 70): 

(a) Oxidation 
(b) Volatilization 
(c) Polymerization 
Cd) Thixotropy 
Ce) Syneresis 
(f) Separation 
(g) Carbonization 
(h) Effect of moisture. 

Oxidation In asphalt technology, oxidation means 

the reaction of oxygen with asphalt. The rate of oxidation 

depends upon the character of the asphalt and such reaction 

conditions as temperature, among others. According to Labout 

(35) at high temperatures, such as exist in a hot mix plant, 

oxygen may react readily with asphalt and bring about dehy-
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drogenation of asphalt* resulting in the formation of as-

phaltenes. The rate at which oxygen reacts with asphalt at 

low temperatures is slow and the oxygen is primarily absorbed 

by the asphalt. Both of these processes result in the harden­

ing of asphalt but to different degrees. Some researchers 

believe that oxidation is the primary cause of hardening of 

asphalt during mixing and laying processes and in the pave­

ment thereafter. 

Volatilization Asphalt is a mixture of hydrocarbons 

with a wide range in molecular weight. Volatilization is 

the evaporation of lighter constituents of asphalt (18, 66). 

The degree to which volatilization progresses in any given 

asphalt depends to a certain extent on its grade, source, re­

fining process, and other atmospheric conditions. Higher 

temperature, that is when heated alone or during mixing of 

the asphalt with heated aggregates, accelerate volatiliza­

tion (18, 28). 

Polymerization Polymerization refers to the process 

in which two or more molecules of the same kind combine with 

one another, resulting in the formation of higher molecular 

weight compounds. In asphalt the lower molecular weight 

hydrocarbons combine to form larger molecular weight hydro­

carbons. This might result in progressive hardening, as the 

lighter molecular weight constituents give asphalts their 

fluidity. 
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Thixotropy Thixotropy is considered as the progres­

sive hardening due to the formation of a structure within the 

asphalt over a period of time. This being a temporary hard­

ening it can be eliminated to a certain degree by re-heating 

the asphalt. The most likely place for hardening of asphalt 

by thixotropy is areas where the pavement is subjected to 

little or no traffic and thereby enabling the structure to 

form within the asphalt (1, 12). 

Syneresis According to Oliensis, (48) syneresis is 

an exudation reaction taking place in asphalt in which, due 

to the formation of the structure within the asphalt, a thin 

oily liquid containing either dispersed or dissolved inter­

mediate and heavier bodies is exuded to the surface. The 

loss of this oily liquid results in the hardening of asphalt. 

This phenomenon is more common with blown asphalts, but it 

may occur in paving asphalts. 

Separation Separation is described as either the re­

moval of asphaltenes or petrolenes or resins from the asphalt. 

This generally results by the selective absorptions of some 

porous aggregates, on which an asphalt film has been placed 

(37). Such an action may result in the hardening or soften­

ing of the asphalt, depending which of the constituents is 

removed from the asphalt film. 
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Carbonization Carbonization is the formation of 

free carbon in the bituminous materials and is induced by 

an extensive elimination of hydrogen Cl). This can be repre­

sented by a general reaction; 

2C%Hy+yO = 2xC +yHgO 

This reaction progresses most rapidly in sun light, but will 

similarly take place when bituminous substances are subjected 

to higher temperatures. 

Effect of moisture All bituminous substances are 

more or less affected upon exposure to moisture, which mani­

fests itself in two ways, namely by the actual absorption of 

water and by the gradual leaching out of soluble constituents. 

These actions become intensified when they are in oxidized 

form, as oxygenated substances seem to have a greater affinity 

for moisture than the hydrocarbons themselves. It has been 

found that asphaltic materials in the presence of light and 

oxygen are gradually converted into water soluble products 

containing acid and ketone bodies. Presence of mineral mat­

ter, having great affinity for water, serves to hasten the 

destruction of bituminous substances Cl). 

Service Behavior of Asphaltic 
Materials in Pavement 

The service behavior of bituminous materials in pavement 

is not fully understood, mainly because there is no direct way 



www.manaraa.com

10 

of evaluating this property. Information about service be­

havior of asphaltic materials in pavements is obtained by: 

(1) Frequent visual inspection of the pavements. 

(2) Obtaining pavement cores after certain periods of 

service and testing for density and stability. 

(3) Recovering asphalt from cores taken from severely 

cracked, slightly cracked and pavements in excellent condi­

tion and studying the changes in physical and chemical char­

acteristics of these asphalts. 

It can be improved by: 

(1) Developing new physical and chemical tests which 

will predict within reasonable accuracy, the durability of 

bituminous materials in pavements. 

C2) Development and better understanding of laboratory 

accelerated weathering tests which will more or less simulate 

field conditions. 

In general, asphalt pavements can fail by cracking. 

Causes of pavement failures have been studied by many investi­

gators in the past C13, 25, 29, 33, 42, 54). Severe harden­

ing of asphalt is concluded as one of the causes of pavement 

failure. Asphalts recovered from pavements laid many, many 

years ago, show that penetration value approaches 30 asymp­

totically on penetration versus pavement life curve. It is 

concluded therefore, that pavement will start cracking and 
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consequently fail when the penetration value will reach 30 

or below (49). On the contrary some pavements having asphalt 

penetration as low as 20, are found in fairly good condition 

(62). The total percent loss and the rate of loss of pene­

tration in pavements depends upon the type of asphalt and 

aggregates used and many other field conditions. In general 

all the asphalts recovered from the cracked pavements show a 

loss of 60 to 70 percent in penetration (41). Hardening of 

binder in pavements and their relation to service behavior 

have also been investigated by many other investigators (36, 

43, 55, 71, 72). 

Methods of Asphalt Extraction and Recovery 
from Asphalt-Aggregate Mixtures 

In evaluating the service behavior of paving asphalt, 

the test sample must be retrieved from asphalt-aggregate mix­

tures. In order to achieve this purpose, however, it is im­

portant that the properties of the asphalt be changed as 

little as possible, during the extraction and recovery proc­

esses. 

Extraction methods 

The binder (asphalt in this case) can be extracted from 

the asphalt-aggregate mixture by dissolving it in any suitable 

solvent. The most commonly used solvents are benzene, carbon 

disulphide, carbon tetrachloride, chloroform and cyclohexane. 
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Asphalt from very small samples of sheet asphalt or fine 

graded mixtures is extracted by soxhlet type apparatus. 

Materials to be extracted are held in the paper or alundum 

thimbles (7). Comparatively larger samples can be extracted 

in Ne^w York extractor and Colorado extractors, which employ 

similar procedure. These methods though simple are most time 

consuming. During development of methods for extracting 

larger samples of sheet asphalt and asphaltic concrete, the 

mixtures were soaked in large quantities of solvent for a few 

hours. The asphalt solution was separated from aggregate by 

décantation. This solution was allowed to stand undisturbed 

for a few days and decanted, thereby removing the sedimented 

fine mineral matter (11). Such a procedure was used until 

the A.A.S.H.O. approved the centrifugal method. Similar or 

modified extraction techniques as described by Siegman and 

Chalk using carbon disulphide, Suida and Hoffmann using ben­

zene and by Kamptner using a variety of solvents are reviewed 

by Ford and Arabian (24). In A.A.S.H.O. a centrifugal ex­

tractor method materials up to 1000 grams can be easily used. 

In this method mineral aggregate is retained inside the centri­

fuge and the asphalt solution is collected outside the centri­

fuge assembly (6). A.A.S.H.O. method is good when materials 

up to 1000 grams are used, for large quantities (5000-6000 

grams). Wood (74) has described a method which gives uniform 

results. Many other modified methods are used by various 
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highway departments and research laboratories. 

Almost all methods other than A.A.S.H.O. method, for 

the extraction of binder from the asphalt-aggregate mixture 

use a similar operation to that of soxhlet extraction or 

other reflux type extraction apparatus. The heated solvent 

vaporizes, and then condenses and falls back upon the mixture 

and then percolates through it dissolving out the asphalt. 

The asphalt solution extracted from the mixture by such 

methods contains a small percentage of colloidal mineral mat­

ter. Presence of mineral matter in asphalt recovered from 

such a solution, materially effects the asphalt properties. 

The solution is therefore, further centrifuged to remove the 

colloidal mineral matter. 

Recovery methods 

Many methods have been tried for recovering asphalts, 

from products in which they are used, in the hope of recover­

ing the asphalts without appreciable alteration in their 

physical and chemical properties. Almost all the methods use 

simple distillation procedure to remove the solvent from as­

phalt solution. Most of the methods used earlier for asphalt 

recovery were not satisfactory as the solvent was not com­

pletely removed at the specified distillation temperatures. 

In order that a recovery method be accepted universally it 

should have: 
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(a) Application over a wide range of asphaltic products, 

since in most cases no prior knowledge is available concern­

ing the type or grade of materials originally used. 

(b) The solvent should be completely removed without 

causing any hardening or polymerization by high temperature 

or prolonged time of heating, and that no other significant 

or material alteration in physical and chemical properties 

take place during the recovery operation. 

Abson (2) in 1933 proposed a method for the recovery of 

asphalt from asphalt solution. Benzene was used as a solvent. 

This method employs simple distillation procedure at 300-325°F 

to remove a large part of the solvent. The remaining solvent 

is removed by bubbling COg through the asphalt. Reproducible 

and uniform results were obtained with this method for many 

asphalts. The validity of this method was further investi­

gated by Abson and many others (3, 4, 5, 54, 55, 59, 65). 

The revised procedure and apparatus was accepted by ASTM (7). 

Bussow (15) proposed another method in which last traces of 

solvent (benzene)are removed by raising the distillation 

temperature from 325°F to 572°F in a specified time, thereby 

eliminating the use of any inert gas. Pfrengle's method (53) 

employs chloroform as a solvent, and removes the solvent by 

passing COg over the constantly stirred solution. Many other 

investigators have proposed methods for asphalt recovery 

using heat, vacuum, or some inert gas or their combination to 
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remove last traces of the solvent (4, 11, 24, 27). 

It is very seldom that any two asphalts from different 

sources will react in a like manner to the same heat treat­

ment or be affected by the solvent used to the same extent. 

Certainly therefore, absolute accuracy of any method for all 

asphalts is not possible. The details of the method used for 

both extracting and recovering asphalt from the asphaltic 

concrete mixtures for this study are given in the Materials 

and Method section. 

Role of Aggregate in Asphalt Hardening 

The asphalt, theoretically, should not undergo any 

change (physical or chemical) when mixed with aggregate pro­

vided the aggregate behaves as an inert material. Mineral 

aggregates used for highway construction show a wide range in 

physical and chemical properties. Aggregates, therefore, can 

not be considered as inert matter. Based upon their affinity 

for water they are classified as hydrophobic (water hating) 

and hydrophilic (water loving). Absorption of water by ag­

gregates was considered as a guide for estimating binder ab­

sorption by aggregates. Goshorn and William (26) and Nevitt 

and Krchma (46) made aggregate absorption studies using SC-6, 

85-100 penetration grade and SC-4 asphalts respectively. 

Further studies on aggregate absorption show that water ab­

sorption is no criteria for binder absorption (37). 
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The physical mechanism by which absorption takes place 

has been shown by microscopy, to be a passage of liquid 

through the intercrystalline channels of the aggregate. More-

absorption is related to the nature of these intercrystal­

line channels. 

Aggregate absorption using kerosene and other heavy 

oils have also been investigated (22, 31). Hveem (31) de­

veloped a method for determining the kerosene oil absorption 

by aggregate. This method is commonly known as centrifuge 

kerosene equivalent (CKE). CKE along with few other physi­

cal tests on aggregates has been used by California Highway 

Commission for determining optimum asphalt content for as­

phaltic concrete mixes. 

Certain aggregates absorb asphalt rapidly under mixing 

conditions. A phenomenon generally referred to as "Burning" 

if often observed when a highly absorptive aggregate is mixed 

with asphalt (37). This results in the dull brown appearance 

or dryness of the mixture. However, other non-absorptive 

aggregates with same asphalt content when mixed under similar 

conditions result in much better mixtures. Burning is caused 

by the absorption of the binder during mixing. 

It is believed that this absorption of asphalt by ag­

gregate is not complete asphalt absorption but it is more or 

less selective type absorption. In this type of absorption, 
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some asphalt constituents (asphaltenes or petrolenes or 

resins) are absorbed more preferentially than the others. The 

removal of some constituents particularly the lighter ones 

from asphalt results in hardening of asphalt, and is very 

severe during mixing time in hot mix plant. It is consider­

ed that loss in penetration that occurs during mixing and 

laying operation may be greater than the loss occurring in 

the pavement over a period of as much as ten years after con­

struction (49). 

Tests for Asphalt, Aggregate 
and Asphaltic Mixtures 

A large number of tests for studying the asphalts, ag­

gregates and their mixtures have been proposed to AASHO and 

ASTM. The accepted tests by these organizations are used as 

standard tests (6, 7). Specification limits for asphalt 

paving materials are based upon these tests. The objective 

of these standard tests vary from classification to durability 

of these materials and their mixtures. 

Routine tests for asphalts 

Routine tests for asphalt cement are specific gravity, 

penetration, flash and fire points, softening point, loss on 

heat, total bitumen content, ductility, spot test, viscosity 

test and chemical composition (per cent asphaltenes). These 

tests aid in the classification of asphalts, predicting their 

durability in pavements and furnish precautionary information 
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needed for their handling. 

Over and above these tests, many indices, such as pene­

tration index, deterioration index, and factors like the 

penetration temperature susceptibility factor and character­

izing factor etc. have been developed (34, 39, 50, 51, 52). 

They are useful in understanding the changes that take place 

in asphalts. Pfeiffer (52) has even used penetration index 

for classifying asphalts. 

Poutine tests for aggregate 

In almost all highway laboratories, the tests conducted 

on aggregates are gradation, specific gravity, unit weight, 

percent voids, Los Angeles abrasion test, absorption of water 

or other oils (kerosene) and chemical composition. Similar 

tests are run on the aggregate recovered from test cores 

taken from pavements, to study the actual de-gradation that 

has taken place under traffic during a certain period. 

Tests for asphaltic concrete mixtures 

Tests conducted on specimens compacted from asphaltic 

concrete mixtures are specific gravity, density, per cent 

voids, stability and cohesion. There are many methods of 

testing stability. Neppe (45) and Stevens (67) have tabulated 

all the tests for measuring the stability of compacted sam­

ples. Asphaltic concrete mixtures are tested by preparing 

specimens of a standard size and compacted in a manner pre­
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scribed by the specific test procedure. Although many un­

certainties exist in all these tests and their interpretation, 

these tests along with the service behavior of the old high­

ways are the best guide a construction engineer has. Vokac 

(71), while emphasizing the sensitivity of the compression 

test, its relation to service behavior and its usefulness as 

a means for mixture control and design, explained the lack 

of significance of certain other physical characteristics 

measured by many other stability tests. Opinions differ from 

person to person, regarding the validity of stability tests, 

as a measure of actual service behavior of asphalt pavements. 

Accelerated Laboratory Weathering Tests 

Hardening of asphalt continues with time even at normal 

temperatures in pavements. Asphalts recovered from pavements 

laid many years ago have shown this effect. The specifica­

tions for asphalts used in highway construction appear to 

be too flexible. Moreover none of the standard tests for as­

phalts and asphaltic mixtures represent any well established 

relationship with service behavior (10, 19, 71). Many people 

have tried one way or the other to study asphalts and asphaltic 

mixtures in the laboratory by subjecting them to conditions 

which might simulate field conditions. Although it is im­

possible to develop natural field (traffic and weather) con­

ditions in laboratory, certain efforts are being made to ap­
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proach such conditions. Following are some of the acceler­

ated laboratory weathering tests run on asphalt and asphaltic 

concrete mixtures. 

Thin film oven test for asphalts 

The standard loss on heat test does not furnish adequate 

information concerning the probable behavior of asphalt in 

asphaltic concrete pavements. The Bureau of Public Roads 

has modified this test and named it "Thin Film Oven Test" 

(40). In this test, asphalt is spread in a standard contain­

er in 1/8 inch thick film and heated in a specified oven at 

325°F for five hours. Routine tests are run (specially duc­

tility and penetration) on the residue from this test. The 

Bureau of Public Roads has run Thin Film Oven tests for al­

most all grades of asphalts, supplied by almost all the pro­

ducers, to different highway construction agencies in this 

country (38, 40, 73). The film thickness can be changed to 

any other thickness if any modification of this method is 

considered necessary just by using a larger pan or using a 

smaller quantity of material. Changes that take place 

during this test are comparable to the changes that may be 

expected to occur in bitumen recovered from mixtures pre­

pared in hot mix plants. Vallerga, Monismith and Granthem 

(70) have further modified this test for studying the effect 

of infra-red and ultra-violet radiation on asphalts. 
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The ability of asphalts to retain their original charac­

teristics as measured by this test, offers a mean of evalu­

ating their relative durability. The allowable loss in the 

physical properties during this test is specified by the 

Bureau of Public Roads : 

(a) The loss in weight after this treatment, should not 

be greater than one per cent for all penetration grades of 

asphalt from 50-60 through 120-150 grades. 

(b) Residue from Thin Film Oven test shall have a pene­

tration at 77°F (100 grams, 5 seconds) of at least 50% of 

that of the original sample. This appears to be equally 

suitable for all penetration grades of asphalt from 50-60 

through the 120-150 grades. 

(c) Residue from Thin Film Oven test shall have a duc­

tility at 77°F (5 cm per minute) of not less than 40 cm for 

50-60 and 60-70 penetration grades and not less than 100 for 

85-100, 100-120 and 120-150 penetration grades. 

Asphalt oxidation 

It is claimed by many researchers that oxidation is 

the prime cause of asphalt hardening (8, 35, 47, 56, 64). 

Nicholson (47) used a modified Abson apparatus, to oxidize 

asphalts by blowing air through samples heated at various 

temperatures. Since asphalts from different crudes and dif­

ferent refining processes react differently to oxidation, he 
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concluded that the mixing temperatures and their temperature 

susceptibility should be given primary consideration. Blow­

ing air for one hour at a specified rate and at mixing tem­

perature, reduced the penetration of many asphalts to one 

half of their original value. Anderson, Stross and Ellings 

(8) subjected the asphalt solution in benzene to oxygen at 

different pressures and at constant temperature. Changes in 

pressure led them to develop a deterioration index for the 

evaluation of asphalt behavior when subjected to oxygen. 

Laboratory natural weathering 

It has been observed that when asphalt in thin film is 

subjected to natural weathering conditions (rain, light, etc.) 

it develops cracks. Zapata (76) subjected the asphalt in 

thin film to the action of light, darkness, freezing tempera­

tures, water sprays, etc. to simulate a natural field condi­

tion. The failure of thin films was checked by spark and 

stain tests. The cycle he used for his study was: 

Freezing at 20-25°F —------—-1.5 hours 
Water spray --------—----------— 1 hour 
Light without spray — 2 hours 
Water spray — —2 hours 
Light without spray -— ———6 hours 
Water spray 1 hour 
Light without spray —— 2 hours 
Water spray —— —— 2 hours 
Light without spray -----—— — —6 hours 

ASTM has a tentative method for accelerated weathering of 

bituminous materials (7). For this test asphalt samples of 
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6,f x 3" x 1/16" dimensions are placed on aluminum plates and 

subjected to light, rain, dry weather etc. inside the labora­

tory for certain periods of time. Tested samples are com­

pared with the original ones. The durability of the materi­

al is expressed as the number of cycles of weathering that 

are required to bring about definite changes in pliability, 

breaking strength, solubility in standard solvents and appear­

ance of the material tested. 

Shaw (63), interested in the 50-60 penetration grade 

asphalts used for water proofing canals, studied the effect 

of natural weathering on thin films of asphalts. He evalu­

ated his results based on penetration, ductility, softening 

point, cavitometer, ball pressure, strain and film hardness 

tests. The last four tests are not standard tests. From his 

work he developed an aging index for evaluation of the changes 

that take place in asphalts during thin film natural weather­

ing. 

Weathering of asphaltic mixtures 

Sheet asphalt mixtures prepared with Venezuelan asphalt 

at 325°F were maintained at the same temperature for 30 min­

utes to one hour. Asphalt recovered by Abson method was 

compared for penetration and ductility with the original and 

also that recovered from mixes just after mixing (29). Com­
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parison of such heat treatment was also made with service­

ability of pavements. Similar heat treatment studies were 

made on 2" by 2" samples prepared from Ottawa sand-asphalt 

mixes. Heat treated samples were tested for compressive 

strength at 77°F (49, 62, 75). It was found that the weather­

ing of Ottawa sand was very severe, due to high per cent of 

voids which result in greater oxidation. 

Aggregates and asphalt go through a severe change in 

temperature before the asphaltic concrete mixture is obtained. 

Asphaltic concrete mixture may remain at high temperatures 

for a period of time in an uncompacted state prior to laying. 

Though undesirable, many times in colder climate areas during 

winter months, the asphaltic concrete mixture is supplied on 

jobs up to a temperature of 375°F (61). 

Selected asphaltic concrete mixtures were subjected to 

heat, oxidation and ultra-violet radiation treatments in this 

investigation. The details of the work are presented in 

different parts of this thesis. 

Effect of laboratory traffic on asphaltic concrete mixtures 

Cantrill (17) and many other investigators, developed 

test tracks for accelerated testing of bituminous paving mix­

tures. Various aggregates and asphalts mixtures were studied. 

Correlation between test track results and actual pavement 

behavior can be established. Ekse and Lacrosse (23) have 
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developed another type test track to study the influence of 

bituminous mat thickness upon surface deflections, sub-grade 

soil pressures and base course requirements. A similar test 

track to study the effect of traffic on sheet asphalt and 

asphaltic concrete compacted specimens by various compaction 

devices is underway in the Bituminous Research Laboratory at 

Iowa State University at Ames, Iowa. Plate 1 gives a general 

view of this test track. 
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Plate 1. A general view of the test track. 

Plate 2. Hetherington-Berner twin shaft pug mill mixer. 
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PURPOSE OF STUDY 

Many researchers have shown that the asphalt recovered 

from asphalt-aggregate mixtures by the available methods 

represent the true condition of the asphalt in mixtures. It 

has been concluded that the asphalt hardens with age in pave­

ments even at moderate temperatures. This hardening of as­

phalt is considered one of the fundamental causes for the 

failure of asphalt pavements. 

The object of this study is therefore threefold: 

1. To determine the changes that take place in the physi­

cal and chemical properties of asphalt when heat treated at 

high temperatures and for long periods of time. 

2. To determine the changes in the physical and chemi­

cal properties of asphalts recovered from the asphalt-

aggregate mixtures subjected to heat, ultra-violet and oxida­

tion treatments in uncompacted state. 

3. To determine the changes in the physical character­

istics of the asphalt-aggregate mixtures when subjected to 

heat, ultra-violet and oxidation treatments in uncompacted 

state. 
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MATERIALS AND METHODS 

Asphalts 

Asphalts used in this study are designated as A, B, C 

and D. They are of 30-40, 85-100, 85-100 and 150-200 pene­

tration grades respectively. The physical and chemical 

characteristics of these asphalts are given in Table 1. As­

phalts B and C were obtained from the plants during the con­

struction of two Iowa highways. Asphalts A and D were ob­

tained from the producers directly. The 85-100 penetration 

grade is commonly used in the state of Iowa. The other two 

penetration grades namely 30-40 and 150-200 were selected 

to check the beneficial or detrimental effect of harder and 

softer grades over 85-100 penetration grade. 

Aggregates 

Aggregates from two sources were selected for this study. 

Combined aggregates are designated as X and Y. The physical 

and chemical characteristics of these aggregates are given 

in Table 2. Pour types of aggregates were obtained from each 

source, i.e. coarse aggregate, intermediate aggregate, fine 

aggregate and dust. These aggregates were collected from hot 

bins at the plants during the construction of two Iowa high­

ways. Gradations of individual and combined X and Y aggre­

gates are given in Tables 3 and 4. 
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Table 1. Physical properties of asphalts useda 

As­
phalt 

Pene­
tration 
77°F/100 
gms/5 sec 

% loss on 
heat at 
325°F for 
5 hours 

Speci­
fic 
gravity 
at 77°F 

Soft­
ening 
goint 

Solu­
bility 
in 
ccl 4% 

Flash 
point 

°F 

Fire 
point 

°F 

Duc­
til­
ity 

Oli-
• ensis 
• spot 
test 

% 
as­
phalt­
enes13 

A 34 .05 1.004 144 99.64 650 695 100+ Neg. 19.94 

B 76 .07 1.005 120 99.93 640 720 150 + Neg. 16.60 

C 86 .08 1.015 115 99.92 635 705 150+ Neg. 18.20 

D 140 .09 0.991 108 99.70 625 685 150+ Neg. 13.40 

Test ASTM ASTM ASTM ASTM ASTM ASTM ASTM ASTM AASHO 
Method D-5 D-6 D-70 0-36 D-165 D-92 D-92 D-113 T-102 

aAll tests except % asphaltenes follow as mentioned, AASHO and ASTM Standards 
(6 and 7). 

^Csanyi and Fung (21). 
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Table 2. Physical properties of aggregates used 

Comb. Centri. / 
agg. X-ray Pore Eff. kero- v 
des- diffraction Appar. Bulk Pwdr. size poro- sene Water Î 
igna- Agg. components spec. spec. spec. dist. sity equiv. absorp.< 
tion type Major Minor grav. grav. grav.a ub %b % % 

Coarse Quartz 
aggre- Traces 
gate Calcite of Dol. 2.69 2.56 2.70 1.20 4.3 - 1.87 

Inter. Quartz 
aggre- Dele­
gate Calcite mite 2.67 2.48 - 4.0 2.15 

X 
Fine 
aggre­
gate Quartz Calcite 2.66 2.45 - 4.5 3.29 

Dust — — 2.69 — — — — 8.7 — 

Coarse Calcite 
aggre- Dolo- Quartz 
gate mite 2.73 2.36 2.72 4.40 14.2 - 6.64 

Inter. Quartz 
aggre- Dolo- Calcite 
gate mite 2.66 2.43 - - - 6.25 

Y 
Fine Calcite 
aggre- Dolo- Quartz 
gate mite 2.67 2.49 - 4.2 2.72 

Dust • *• • • — •» — — « 

*Rush (58). 

^Ritter and Drake (57). 

Based on microscopic measurement of binder penetration in coarse a 
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Centri. Absorp. Ratio 
Pore Eff. kero- with SAE oil Esti-
size poro- sene Water No. 10 to mated 
dist. sity equiv. absorp.oil water binder 

a  u b  % b  %  %  %  a b s o r p .  a b s o r p . c  

I 1.20 4.3 - 1.87 3.2 1.71 Low 

4.0 2.15 3.0 1.40 

- - 4.5 3.29 - - -

— — 8.7 — — — — 

> 4.40 14.2 - 6.64 5.6 0.84 High 

— — 6.25 — 5.0 — — 

- - 4.2 2.72 — - — 

inder penetration in coarse aggregates. 
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Table 3. Gradations of combined aggregates X, design mix 
and Iowa Highway Commission specification limits 
for type A asphaltic concrete mixtures 

Total percent passing Iowa High­
u. s. Coarse Interme­ Fine Filler De­ way Commis­
sieve aggre­ diate ag­ aggre­ (dust) sign sion specifi­
number gate gregate gate mix cation limits 

3/4" 99.4 100 100 100 99.8 98-100 
1/2" 67.9 100 100 100 94.7 85-100 
3/8" 20.8 99.9 100 100 80.2 67-87 
4 1.1 29.9 98.8 100 57.4 47-68 
8 0.8 2.1 88.1 100 45.9 37-55 
30 0.7 1.4 51.9 99.9 31.3 19-34 
50 0.0 1.4 30.4 96.5 22.0 13-26 
100 0.0 1.2 11.9 65.7 11.6 6-18 
200 0.0 0.9 7.3 43.3 7.4 3-10 

Table 4. Gradations of combined aggregates Y, design mix 
and Iowa Highway Commission specification limits 
for type A asphaltic concrete mixtures 

Total percent passing Iowa High-
U. S. Coarse Inter- Fine De- way Commis-_ 
sieve aggre- mediate aggre- sign sion specif i-
number gate aggregate gate mix cation limits 

3/4" 99.7 100 100 100 98-100 
1/2" 59.6 100 100 89.9 85-100 
3/8" 14.3 99.2 100 78.4 67-87 
4 0.9 28.5 100 61.0 47-68 
8 0.8 1.6 90.3 50.5 37-55 
30 0.7 1.3 48.6 27.2 19-34 
50 0.0 1.3 27.7 15.5 13-26 
100 0.0 1.2 13.6 7.7 6-18 
200 0.0 1.1 8.7 5.0 3-10 
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Mix Design 

Laboratory mixes for asphaltic concrete were designed 

from the gradations given in Tables 3 and 4 to meet the Iowa 

Highway Commission specifications for type A asphaltic con­

crete mixes (32). The designed mix for aggregate X consists 

of 25 per cent coarse aggregate, 25 per cent intermediate 

aggregate, 43 per cent fine aggregate and 7 per cent dust and 

for aggregate Y, 25 per cent coarse aggregate, 20 per cent 

intermediate aggregate and 55 per cent fine aggregate. The 

gradation of designed mixes and the Iowa Highway Commission 

specifications for such mixes are given in Tables 3 and 4 and 

shown graphically in Figures 1 and 2. 

Mixing Procedure 

The laboratory samples of the asphaltic concrete mixes 

were made in a Hetherington-Berner twin shaft laboratory pug 

mill mixer of 50 pound capacity. Plate 2 gives a general 

view of the mixer. The paddle tips of the mixer are so ar­

ranged as to give a figure eight type mixing action. All the 

mixing was done in batches of twenty-five pounds. The mixer 

is equipped with an electrical heating system, hence the body 

of the mixer was heated prior to any mixing. 

The designed mix aggregate was heated up to 350 t 10°F 

and asphalt heated to 300 * 10°F before mixing. Twenty-five 
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pounds of aggregate was mixed dry for fifteen seconds and 

then 1.56 pounds of asphalt (6.25 per cent by weight) was 

poured over the mixing aggregate manually, the wet mix was 

continued for another 30 seconds. The temperature of the re­

sulting mixture in all batches varied from 250°F to 280°F. 

Aggregates X and Y were mixed with asphalts A, B, D, and A, 

C, D respectively. This resulted in six different asphaltic 

concrete mixes. The mixer speed, mixing time, asphalt and 

aggregate temperatures were maintained constant during all 

mixing operations. 

Heat Treatment of Asphalts 

The four asphalts A, B, C, and D were subjected to heat 

treatment. Approximately 50 grams of each material was taken 

in 3 oz. glass bottles and heated in constant temperature 

ovens. The duration of heating was 2, 4, 8, 16, 24, and 72 

hours in an oven set at 325°F and 4, 8, 16, 24, 72 and 120 

hours in an oven set at 230°F. The glass bottles were open 

at top and stirred periodically with a glass stirrer. A loss 

on heat oven with a rotating shelf was used for the heat 

treatment. 

Treatment of Mixes for Asphalt Recovery 

Heat treatment 

Representative samples of one thousand grams of the as­

phaltic concrete mixes were used for heat treatment. These 
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samples were subjected to heat in ovens set at 325, 230 and 

140°P for a period of 2, 4, 8, 12 hours; 4, 8, 16, 72 hours; 

and 120, 240, 360 and 720 hours respectively. The asphaltic 

concrete mix was spread in enamel 16" x 11" x 2.5" pans to 

give a minimum sample thickness. Mixes were stirred period­

ically to insure uniform heating. After the specified time 

of treatment was over the samples were taken out of the ovens 

and allowed to cool to room temperature. The asphalt was 

recovered from these treated mixes as explained under "as­

phalt recovery". All the six types of asphaltic concrete 

mixes were similarly treated. 

Ultra-violet radiation treatment 

Asphaltic concrete mix samples similar to those used in 

heat treatment were subjected to ultra-violet radiation. 

Each sample was spread on a revolving shelf shown in Plate 

3. The ultra-violet radiation source was so arranged as to 

have only half of the sample directly under the light at one 

time. The rotating speed of shelf was 1.5 revolution per 

minute. An ultra-violet light of 3700 Angstrom wave length 

was used. Temperature of mix due to ultra-violet radiation 

was maintained below 140°P. Each asphaltic concrete mix 

sample was subjected to such radiation for 4, 8, 16 and 24 

hours. 

Oxidation treatment 

Similar samples of the mixes weighing 1000 grams, as 
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Plate 3. Treatment of loose asphaltic concrete mix by 
ultra-violet radiation. 

Plate 4. Pressure device used for oxidation treatment of 
asphaltic concrete mixes. 
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used in heat treatment, were placed in pressure cooker as 

shown in plate 4. The pressure cooker was evacuated and 

then filled with oxygen up to a pressure of five pounds per 

square inch and then placed in preheated oven for a speci­

fied period. The duration of heat in an oven set at 325°F 

was 1, 2 and 4 hours and in an oven set at 230°F was 2, 4, 

and 8 hours. At the end of the specified time the cooker 

was removed from the oven, the oxygen released and the mix­

ture allowed to cool to room temperature and stored until 

asphalt was recovered. Samples from all the six asphaltic 

concrete types were similarly treated. 

Treatment of Mixes for Stability and Cohesion 

Heat treatment 

Approximately an eight pound sample of representative 

mix was placed in large size enamel pan and subjected to 

heat treatment. The temperatures and treatment time selec­

ted were the same as used for treatment of mixes for asphalt 

recovery. The mix was stirred periodically to insure uni­

form heating. After the specified time the mix was removed 

from the oven and three specimens 4 inches in diameter and 

2.5 inches in height were compacted by static load, double 

plunger method. All of the six asphaltic concrete mixes 

were treated similarly. 
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Ultra-violet radiation treatment 

Asphaltic concrete samples in the loose state weighing 

1200 grams, were subjected to ultra-violet radiation as 

mentioned "under treatment of mixes for asphalt recovery", 

for a period of 4, 8, 16, and 24 hours. One 4 inches in 

diameter and 2.5 inches in height was compacted by static 

load double plunger method of each mix. 

Oxidation treatment 

Oxidation treatment of asphaltic concrete mixes for sta­

bility and cohesion was similar to the one as described 

"under treatment of mixes for asphalt recovery" except 1200 

grams of material were used instead of 1000 grams. One 

specimen 4 inches in diameter and 2.5 inches in height was 

compacted by static load double plunger method from such oxi­

dized material. 

Compaction Procedure 

Specimens, four inches in diameter and two and one half 

inches in height were compacted from treated and untreated 

asphaltic concrete mixes. A static load double plunger com­

paction procedure as used by the Iowa Highway Commission 

was followed. Compaction temperature of the mix was main­

tained at 250°F. Constant loading rate was used for all 

compaction work. Steel plates between the mold and the base 

plate were removed when the load reached 1000 lbs. (80 psi). 
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Further loading continued at the same rate until the load 

reached to 37,716 lbs. (3000 psi). This load was maintained 

for three minutes, and then released slowly and the sample 

extruded from the mold. All the samples were compacted un­

der identical conditions. The tolerance in the height of 

samples was ± l/l6 inches. 

Extraction of Asphalt from Mixtures 

Asphalt was extracted from asphaltic concrete mixes by 

standard A.A.S.H.O. rotarex centrifuge procedure, using ben­

zene as a solvent. To accelerate centrifuging 1000 grams 

of the asphaltic concrete mixture was soaked in 250 ml. of 

benzene for one hour in one quart glass jars. The contents 

of the jars were stirred periodically by shaking the jar. 

The mixture (benzen + mix) having most of the asphalt dis­

solved was then centrifuged in the Rotarex centrifuge. Ad­

ditional quantities of benzene were added so as to complete 

the extraction. 

The asphalt solution in benzene, so obtained contained 

undesirable quantities of colloidal mineral matter. This 

was removed by further centrifuging the solution at 400 G 

for 30 minutes. Dust free asphalt-benzene solution was de­

canted from the centrifuge flasks, thus leaving mineral mat­

ter at the bottom of the flasks. Asphalt was recovered from 

this solution by modified Abson method. 
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Recovery of Asphalt 

The Abson apparatus with some changes was used for re­

covering the asphalt. The distillation assembly is shown 

in Plate 5. One neck of the 500 ml. pyrex flask was fitted 

with a thermometer, the middle neck provided a connection 

between flask and condenser and the third neck was closed 

temporarily with a cork, to be replaced by a dispersion 

tube in the later stages of distillation. The flask was 

heated with an electric heating mantle. The mantle tempera­

ture was maintained at 350°F so as to keep the flask con­

tents at 325 - 10°F. Distillation was continued without 

gas until the rate of condensation of benzene decreased to 

10 to 15 drops per minute. The cork in the third neck of 

the flask was then replaced by a dispersion tube for CO2. 

Carbon dioxide was supplied at a slow rate at first and in­

creased then to a maximum of 800-900 ml. per minute for 30 

minutes. The flow of COg gas was measured by a gas flow 

meter. At the end of thirty minutes the gas was discon­

tinued and the asphalt poured into a container and stored 

for further studies. 

Testing procedure for asphalts 

Penetration A.S.T.M. Standard Test 0-5 procedure 

"for penetration of bituminous materials" was followed to 

determine the penetration of original, treated and recovered 
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Plate 5. Distillation assembly for reclaiming asphalt. 

Plate 6. A general view of 
the apparatus for 
determining the as-
phaltene content of 
asphalts. 

Plate 7. Sliding plate 
microviscometer in' 
operation. 
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asphalts (7). The load, time and temperature used for this 

test were 100 grams, 5 seconds and 77°F (25°C) respectively, 

and the units of penetration to indicate hundredths of a 

centimeter. 

Softening point The A.S.T.M. Standard (D-36) ring 

and ball method was used to run the softening points of the 

asphalts (original, treated, recovered). The softening 

point results are expressed in degrees Fahrenheit. 

Percent asphaltenes The asphaltene content for all 

the asphalts was obtained by the selective solvent method 

proposed by Csanyi and Fung (21). Skelly F was used as a 

solvent. Apparatus used for this determination is shown in 

Plate 6. The extraction time in the soxhlet extractors was 

maintained for 8 hours throughout this study. Asphaltene 

content is expressed as a percent of the total asphalt used 

for the test. 

Viscosity The viscosity of all the asphalts was ob­

tained by using a microviscometer. The details of procedure 

are given by inventors of this equipment (35), and also out­

lined by Griffin, Miles and Penther (28) and as supplied 

with the equipment. A general view of the equipment in 

operation is shown in Plate 7. The viscosity values so ob­

tained are plotted on a log log paper and the viscosity 

value corresponding to shearing rate of 5 x 10~2 sec-1 is 
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obtained from the graph. 

For reporting viscosities, 5 x 10~2 sec""* shear rate 

was chosen by Griffin, Miles and Penther (28), because it 

is a convenient rate for thin film viscometer. Other shear 

rates for this viscometer between 5 x 10~2 see"* and 5 x 

10""* sec"* can also be used as long as the same shear rate 

is used for all asphalts to be compared. The viscosity value 

is expressed in poises. 

Testing procedure for compacted samples 

Specific gravity and percent voids Bulk density and 

per cent voids in compacted samples were determined as follows : 

weight of sample in air, grams 
Bulk specific gravity = weight of sample in air, grams -

weight of sample in water, grams 

pprront vniHc = 100 (maximum theoretical specific gravity-
bulk specific gravity) 

maximum theoretical specific gravity 

The maximum theoretical specific gravity was obtained by the 

method outlined by Serafin (60). 

Stability Stability of the compacted specimens was 

obtained by Hveem stabilometer shown in Plate 8. The pro­

cedure outlined in the material and research department labor­

atory manual of California standard test procedures was fol­

lowed (16). All samples were tested at 140°F. The calcu­

lated stability values (S) and the stability values used by 
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Plate 8. Hveem stabilometer in operation. 

Plate 9. Hveem cohesiometer. 
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the Iowa Highway Commission are given under results and dis­

cussion. The Iowa Highway Commission used lateral pressure 

reading corresponding to a vertical pressure of 400 psi as 

their design criteria, instead of the calculated Hveem sta­

bility value ,,S". 

Cohesion Cohesion values for the compacted speci­

mens were obtained by using the Hveem cohesiometer shown in 

Plate 9. The California standard test procedure outlined in 

a Material and Research Department Laboratory Manual was 

followed (16). All samples were tested at 140°P and the 

cohesion value "C" calculated as outlined in that manual. 
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PRESENTATION AND DISCUSSION OF RESULTS 

Four asphalts used in this study were subjected to 

heat treatments at 230 and 325°F. Six asphaltic concrete 

mixes prepared with the four asphalts and two aggregates 

were subjected to heat, ultra-violet radiation and oxidation 

treatments in an uncompacted state. The asphalt from these 

treated asphaltic concrete mixes was recovered by the modified 

Abson method. Stability and cohesion of the compacted samples 

were determined by the Hveem stabilometer and cohesiometer. 

Test results are presented both in tabular as well as in 

graphical form to aid in the interpretation of the results. 

Heat Treatment of Original Asphalts 

The four asphalts A, B, C, and D used in this study 

were heat treated at 325 and 230°F for various time inter­

vals. The experimental results for these asphalts are as 

follows: 

Experimental results 

Penetration Consistency changes that take place 

during the heating of asphalts were measured by a standard 

penetration test. The penetration values so obtained are 

given in Table 5 and shown graphically in Figure 3. These 

four asphalts showed a loss in penetration of between 15 

and 40 per cent at the end of 24 hours and between 20 and 

55 per cent at the end of 72 hours of continuous heating at 
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Table 5. Penetration of asphalts before and after heat 
treatment 

Treatment Treatment 
tempera- time Penetration 
ture op hrs. A B C D 

r 0 34 76 86 140 

325 2 31 74 80 130 

325 4 29 67 77 128 

325 8 28 62 74 120 

325 16 28 56 67 115 

325 24 28 47 62 104 

325 72 26 35 40 69 

230 4 32 74 83 134 

230 8 32 73 82 128 

230 16 32 70 78 126 

230 24 31 70 76 126 

230 72 31 62 69 117 

230 120 28 55 60 112 

325°F. The same asphalts when heated at 230°F showed a loss 

of 8 to 12 per cent after 24 hours and 8 to 20 per cent after 

72 hours of continuous heating. In both of these cases as­

phalt B (85-100 penetration grade) showed the highest and 

asphalt A (30-40 penetration grade) showed the lowest per 

cent loss in penetration. Asphalt D (150-200 penetration 

grade) showed less per cent loss in penetration than the 
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Figure 1. Gradation of combined aggregate 
X and Iowa Highway Commission specifica­
tions for type A asphaltic concrete mixes. 
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Figure 3. Penetration of asphalts 
after heat treatment at 230 and 
325*F. 
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Figure 5. Percent asphaltenee of 
asphalts after heat treatment at 230 
and 325"F. 
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Figure 2. Gradation of combined aggregate 
Y and Iowa Highway Commission specifica­
tions for type A asphaltic concrete mixes. 
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Figure 4. Softening point of asphalts 
after heat treatment at 230 and 325eF. 
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Figure 6. Viscosity of asphalts 
after heat treatment at 230 and 
325'F. 
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85-100 penetration grade asphalts B and C. Per cent loss in 

penetration for these four asphalts when heated at 325 and 

230°F for periods of 24 and 72 hours is shown in Figure 55. 

Volatilization of light molecular weight hydrocarbons or 

their changes to higher molecular weight hydrocarbons due to 

oxidation or dehydrogenation or polymerization reactions 

seems to bring these changes in penetration values. 

Softening point The effect of temperature on these 

asphalts was judged by the softening point test. The Ring 

and Ball metnod was used to determine the softening point. 

The results so obtained are given in Table 6 and shown graph­

ically in Figure 4. The increase in softening point varied 

between 4 and 13 per cent after 24 hours and between 4 and 

22 per cent after 72 hours of heating at 325°F. Per cent 

increase in softening point varied between 0 to 10 per cent 

and 0 to 13 per cent when the same asphalts were heated at 

230°F for 24 and 72 hours respectively. Asphalt C (85-100 

penetration grade) showed the highest and asphalt A (30-40 

penetration grade) showed the lowest per cent increase in 

softening point. Asphalt D (150-200 penetration grade) 

showed comparatively lower per cent increase in softening 

point than the 85-100 penetration grade asphalts B and C. 

The increases in softening points indicate that heating of 

asphalts at higher temperatures make them less susceptible 
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Table 6. Softening point of asphalts before and after heat 
treatment 

Treatment 
temperature 

Op 

Treatment 
time Softening point op 

Treatment 
temperature 

Op hr s « 
A B C D 

— 
0 144 120 115 108 

325 2 145 122 115 109 

325 4 145 126 118 109 

325 8 146 127 118 110 

325 16 148 131 119 115 

325 24 149 135 121 118 

325 72 150 144 141 126 

230 4 144 124 117 109 

230 8 143 126 118 111 

230 16 143 129 120 111 

230 24 144 132 120 111 

230 72 144 135 124 113 

230 120 147 136 131 115 

to temperature but at the cost of other physical properties. 

Increase in softening point of asphalts A, B, C and D after 

continuous heating for 24 and 72 hours at 230 and 325°F 

is shown in Figure 55. 
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Per cent asphaltenes Asphaltenes, one of the three 

major constituents of asphalt, are dark brown or black in 

color consisting of high molecular weight hydrocarbons. The 

per cent asphaltenes was determined by the selective solvent 

method (21). The values so obtained are given in Table 7 

and shown graphically in Figure 5. The per cent increase in 

asphaltenes is between 14 to 20 per cent after 24 hours and 

between 28 to 35 per cent at the end of 72 hours of heating 

at 325°F for all the four asphalts. The increase in asp&alt-

ene content is much less at lower temperatures; it is 3 to 

10 per cent after 24 hours and up to 14 per cent after 72 

hours of heating at 230°F. The increase in asphaltenes is 

considered due to the oxidation or dehydrogenation of oily 

constituents of asphalts. The oily constituents generally 

result in the formation of asphaltic resins, which in turn 

form asphaltenes by further oxidation as shown by the follow­

ing equation: 

oxidation 
Oily constituents of asphalt or— Asphaltenes + 

dehydrogenation asphaltic 
resins 

oxidation 
Asphaltic resins-— asphaltenes. 

Such a change in the constituents of asphalt to form more 

asphaltenes results in the hardening of asphalt. 

Increases in the asphaltene content of asphalt A, B, 



www.manaraa.com

50 

Table 7. Per cent asphaltenes of asphalts before and after 
heat treatment 

Treatment Treatmei 
temperature time in 

°F hrs. 

at 
Per cent a: sphaltenes 

Treatment Treatmei 
temperature time in 

°F hrs. A B C D 

— 0 19. .94 16 .60 18 .20 13, .40 

325 2 20, .06 16, .65 18. .45 14. .29 

325 4 20, .68 16. .80 18. .80 14. .50 

325 8 21. .49 17. .82 19. .90 14. .68 

325 16 22. .89 18. .60 20. .40 14. .80 

325 24 23. .10 19. .90 21. .00 15. .26 

325 72 25. .54 22. .30 24. .60 17. .86 

230 4 20. .02 16. .75 18. .40 13. .60 

230 8 20. .62 17. .20 18. .45 13. .90 

230 16 20. ,73 18. .28 18. ,60 13. .82 

230 24 21. ,00 18. ,35 18. ,84 14. ,38 

230 72 21. ,66 18. ,50 19. ,40 15. ,33 

230 120 23. ,08 18. ,60 19. ,85 17. ,87 

C and D and due to 24 and 72 hours of heating at 230 and 325°F 

are shown in Figure 55. 

Viscosity The viscosity values for all the asphalts 

in poises, were obtained by using a microviscometer. The 

viscosity values are given in Table 8 and shown graphically 

in Figure 6. Asphalts A, B and C increased in viscosity 2 



www.manaraa.com

51 

Table 8. Viscosity of asphalts before and after heat 
treatment 

Treatment Treatment 
temperature time in Viscosity in 10^ poises 

op hrs. A B C D 

•— 0 11.80 4.50 2.25 0.45 

325 2 14.60 4.80 2.90 0.59 

325 4 16.50 5.30 3.30 0.61 

325 8 18.50 6.00 3.50 0.74 

325 16 22.50 7.00 3.80 0.96 

325 24 23.50 7.80 4.80 2.02 

325 72 27.50 9.68 5.83 4.50 

230 4 13.50 5.00 2.75 0.64 

230 8 15.50 5.40 2.85 0.51 

230 16 16.50 5.60 2.90 0.62 

230 24 17.00 6.10 3.20 0.74 

230 72 18.00 6.20 3.60 1.05 

230 120 18.50 8.34 4.90 1.13 

to 3 fold and asphalt D, 7 to 10 fold when heated at 325°P 

for 24 to 72 hours. At 230°F the viscosity changes were not 

too severe, however increase in viscosity up to 2 times the 

original value were obtained after 72 hours of heating. In­

creases in viscosity values due to 24 and 72 hours heating 

of all the four asphalts at 325 and 230°P are shown in Fig­

ure 55. The increase in viscosity of asphalt is indicative 
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of its hardening and is due to the changes in chemical com­

position brought by the heat treatment. 

Characterizing factor According to Kinnaird (34) 

when the lines connecting the log (softening point — 77) and 

log penetration at 77°P of all asphalts obtained from the 

same stock are drawn, they all pass through the same common 

point (see figure below). He developed what is known as 

v re­

characterizing factor to establish a mathematical relation­

ship between softening point and penetration of various as­

phalts. 

W"/Sjr 

P77 = penetration of asphalt at 77°P, 100 grams and 5 seconds, 

SP = softening point in °F (ring and ball) method, and 

F = characterizing factor. 
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The characterizing factor permits the classification of 

asphalts into groups that are similar in chemical composi­

tion. Asphalts having identical percentages of paraffinic 

constituents were found to have an identical characterizing 

factor, and this factor has the same mathematical value as 

the percent paraffinic constituent of asphalts. If changes 

take place in asphalt in such a way that the paraffinic con­

stituent remains unchanged, the characterizing factor also 

remains unchanged, irrespective of the changes in penetra­

tion and softening point. On the other hand if the chemical 

composition of the asphalt is materially changed, there will 

also be a change in the characterizing factor. Changes in 

the characterizing factor then could be considered as a 

measure of the changes that take place when asphalts are sub­

jected to various treatments. 

The characterizing factor values for all asphalts were 

obtained from the nomograph (34). The values so obtained are 

given in Table 9. These values for asphalts subjected to 

heat treatment for various time intervals and different tem­

peratures are essentially the same. The slight variations 

in these values might have been due to experimental error. 

No change in characterizing factor indicates that heat treat­

ment has no effect on the paraffinic constituents of asphalts. 

However, other chemical constituents of asphalt are affected 

by heat treatment, which in turn bring some changes in such 
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Table 9. Characterizing factor for asphalts before and 
after heat treatment 

Treatment Treatment 
temperature time in Characterizing factor 

°F hrs. A B C D 

- 0 18 22 20 27 

325 2 16 23 16 25 

325 4 16 23 19 26 

325 8 15 22 18 24 

325 16 16 23 16 28 

325 24 17 21 16 27 

325 72 15 20 20 25 

230 4 16 24 21 27 

230 8 16 27 20 29 

230 16 16 30 22 28 

230 24 16 32 21 28 

230 72 16 30 23 29 

230 120 15 26 25 31 

physical properties of the asphalt as penetration and soften­

ing point etc. The average characterizing factor values for 

asphalts A, B, C and D are 18, 22, 20 and 27 respectively. 

Kinnaird in his study used similar penetration grade asphalts 

as A, B, C and D and obtained characterizing factor values of 

7, 16, 19 and 21 respectively. These asphalts were from 

different sources and had different penetration and soften­

ing points than the ones used in this study. 
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Penetration index Penetration index was introduced 

by Pfeiffer (50, 51) while studying the penetration-tempera­

ture susceptibility of asphalts. The derivation of the 

penetration index is based on the assumption that all asphalts 

have penetration equal to 800 at their softening point. 

PI = 30 —10 
1 + 9 0  P T S  

PTS = Log 800-Log P 
t-77 

PI = penetration index 

PTS = penetration-temperature susceptibility 

p = penetration at 77°F, 100 grams and 5 seconds 

t = softening point °F (ring and ball method). 

Based on the penetration index asphaltic bitumens were 

grouped into three classes merging into one another, the 

boundaries of which have been chosen more or less arbitrarily 

( 5 2 ) :  

1. The class with index -1 to +1, the "N type". This 

class comprises a great many steam-refined bitumens, general­

ly used for road construction. These are therefore sometimes 

called "normal bitumens". 

2. The class with an index below -1, the "Z type". 

This class is also sometimes called the "coal-tar pitch 

type". Like the coal tar pitches, the bitumens of this type 

are characterized by their great susceptibility and in gener-
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al also by their greater tendency to show brittleness. 

3. The class with an index greater than 1, the "R type". 

In addition to a low temperature susceptibility, these 

bitumens are generally characterized by slight brittleness. 

As most of the blown bitumens have these characteristics, 

this type of bitumen is also sometimes indicated as the 

blown type. 

It should be observed that not all straight run bitumens 

belong to the normal type, nor all blown bitumens to the R 

type. There are blown bitumens of the Z type and the nor­

mal type, and both the Z type and the R type are found among 

the straight-run bitumens. 

However, knowing the original penetration index of a 

certain asphalt, changes that take place when subjected to 

various treatment can be investigated. . The calculated values 

of penetration index for the heat treated asphalts are shown 

in Table 10. The penetration index values vary between -1 

and +1. All asphalt with penetration index values between 

-1 and +1 belong to the "normal asphalt" category of Pfeif-

fer's classification and are essentially steam refined as­

phalts. Asphalts therefore when heated in large quantities, 

at temperatures up to 325°F even for longer periods of time 

do not seem to bring basic chemical changes which will change 

their general classification based on penetration index values. 



www.manaraa.com

57 

Table 10. Penetration index for asphalts before and after 
heat treatment 

Treatment Treatment 
temperature time in Penetration index 

OF hrs. A B C D 

— 0 +0.544 -0.425 -0.895 -0.614 

325 2 +0.445 -0.229 -1.090 -0.895 

325 4 +0.413 +0.067 -0.640 -0.744 

325 8 +0.253 +0.007 —0.666 -0.769 

325 16 +0.544 +0.252 -1.090 +0.007 

325 24 +0.749 +0.316 -0.845 +0.186 

325 72 +0.478 +0.612 -0.612 +0.159 

230 4 +0.316 +0.067 -0.507 -0.560 

230 8 +0.221 +0.316 -0.692 -0.341 

230 16 +0.714 +0.611 -0.221 -0.397 

230 24 +0.348 +0.997 -0.452 -0.397 

230 72 +0.348 +0.997 -0.692 -0.285 

230 120 +0.446 +0.819 —0.446 -0.083 

Overall results indicate that heat treatment of these 

asphalts brought considerable changes in their physical and 

chemical properties. Changes in penetration were compara­

tively high. A loss up to 50% was observed in 85-100 and 

150-200 penetration asphalts after 72 hours of heat treat­

ment at 325°F. Asphalt A (30-40 penetration grade) showed 

much less changes. Softening point, per cent asphaltenes, 
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and viscosity values for these treated asphalts at 325°F 

showed considerable changes. However changes in the proper­

ties of asphalt heat treated at lower temperatures such as 

230°F showed comparatively less changes in properties. Vola­

tilization of the light molecular weight hydrocarbons or their 

oxidation or dehydrogenation and polymerization to higher 

molecular weight hydrocarbons constituents are considered to 

be the cause of changes in properties of these heat treated 

asphalts. Higher changes at 325°F than at 230°F heat treat­

ment indicate that all these reactions which bring changes in 

the physical and chemical properties of asphalts are accelera­

ted at higher temperatures. Changes at lower temperature are 

comparatively small but longer heating periods seem to bring 

changes similar to those of higher temperatures at short 

heating periods. The characterizing factor remains unaffec­

ted by heat treatment, both at 230 and 325°F, indicating that 

the paraffinic constituents of asphalts are not materially af­

fected by heat treatments. Penetration index values of the 

heat treated asphalts vary between -1 and +1 but show an in­

creasing trend toward positive values with increasing heat 

treatment time and temperature. Heat treatment of asphalts 

for longer periods of time at 325°F or higher will affect the 

properties of the asphalt materially. However shorter periods 

of heating which are necessary do not seem to bring on material 

change. Heating of asphalts during actual construction of 
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highways therefore should be kept to a minimum necessary tem­

perature to avoid changes in their physical and chemical proper­

ties. 

Recovered Asphalt from Treated 
Asphaltic Concrete Mixes 

Asphalts from uncompacted mixes, subjected to heat, 

ultra-violet radiation and oxidation treatments were recovered 

by the modified Abson method. The penetration, softening 

point, per cent asphaltenes, viscosity of the recovered as­

phalts and other related data are presented below. 

Heat treatment 

Penetration Penetration values obtained for all the 

recovered asphalts are given in Table 11 and shown graphically 

in Figure 7. All the asphalts recovered from mixes, treated 

at 325°F for 8 hours showed a loss of 75 to 87 per cent of 

the original penetration. Asphalts recovered from heat treated 

mixes at 230°F for 24 to 72 hours and at 140°F for 720 hours 

showed a loss of 50 to 70 per cent and 45 to 65 per cent re­

spectively. Figures 8, 9 and 10 indicate that the loss in 

penetration of almost all the asphalts, recovered from heat 

treated asphaltic concrete mixes with aggregate Y is compara­

tively lower than the asphalts recovered from asphaltic con­

crete mixes with Aggregate X. The effects of aggregate on 
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Table 11. Penetration of asphalts recovered from heat treated loose asphaltic 
concrete mixes 

Treat - Treat 
ment ment Aggre­ Aggre­ Aggre­ Aggre­ Aggre­ Aggre­
temp. time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
op hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

0» 34 34 76 86 140 140 
• — 0b 28 28 53 59 98 103 
325 2 12 19 37 47 52 63 
325 4 8 12 19 34 40 51 
325 8 8 8 10 ' 21 24 33 

230 4 23 21 47 50 71 92 
230 8 21 19 40 48 61 81 
230 16 19 17 34 44 55 71 
230 24 17 15 27 40 49 63 
230 72 12 13 23 34 45 52 

140 120 22 25 43 56 73 81 
140 240 17 20 29 44 69 79 
140 360 14 19 28 38 53 76 
140 720 12 16 27 32 50 75 

^Penetration of asphalts before mixing with aggregate. 

^Penetration of asphalts recovered from mixes just after mixing. 
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Penetration 

Heel ireotment el 140 

Treatment time m heure 

Heel treatment et 230 

Treatment time w hewn 

Meat treatment et 319* f 

Treatment Mme m heure 

Figure 7. Penetration of asphalts 
recovered from heat treated asphal­
tic concrete mixes at 140, 230 and 
325* F. showing penetration before 
mixing, after mixing and after heat 
treatments. 

— Mm *nm aggregate K 
aggregate Y 

1 - Heat treatment 
at 325*F. 

2 - Heat treatment 
at 230*F. 

3- Heat treatment 
at 1406F. 

4 - Ultra violet 
radiation treat­
ment. 

5 - Oxidation at 
at 325*F. 

6 - Oxidation at 
230'F. 

Treatment time In heure 

Figure 8. Penetration of asphalt A recovered from 
asphaltic concrete mixes that have been subjected to 
various forms of treatments. 

Treotment time In hours 

Figure 9. Penetration of asphalts B and C recovered 
from asphaltic concrete mixes that have been sub­
jected to various forma of treatments. 

Treatment time In hewn 

Figure 10. Penetration of asphalt D recovered from 
asphaltic concrete mixes that have been subjected to 
various forms of treatments. 

Treefment time In Mere 

Figure 11. Penetration of asphalts A, B, and D re­
covered from asphaltic concrete mixes with aggre­
gate X that have been subjected to various forma of 

treatments. 

Treatment time in hour* 

Figure 12. Penetration of asphalts A, C, and D re­
covered from asphaltic concrete mixes with aggre­
gate Y that have been subjected to various forma of 
treatments. 
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the physical properties of recovered asphalts are discussed 

later. 

Most of the highway departments require that the pene­

tration of the recovered asphalt from asphaltic concrete mix 

samples taken during the construction period should have 

penetration not less than 50 per cent of the original value. 

Data show that, in order to have a loss in penetration of 

about 50 per cent, due to heat treatment of mixes in un-

compacted state, it will take approximately 700 hours at 

140°F, 16 to 24 hours at 230°F and 2 to 4 hours at 325°F. 

Much shorter periods can therefore be expected at higher 

temperatures for similar loss in penetration. These results 

indicate that the asphalt in pavement will therefore be harden­

ed considerably if the asphaltic concrete mixes are subjected 

to higher temperatures even for very short periods, (such as 

mixing and handling time at higher temperatures). Lower tem­

peratures for longer periods of time coupled with other field 

conditions also contribute to the hardening of asphalt in 

pavements. Figures 11 and 12 show the effect of different 

grades of asphalt (30-40, 85-100, 150-200) and two types of 

aggregate on the penetration of recovered asphalts from as­

phaltic concrete mixes subjected to various forms of treat­

ments. 

Softening point The softening points of recovered 

asphalts were obtained by the ring and ball method. The test 
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results so obtained are given in Table 12, and shown graph­

ically in Figure 13. The per cent increase in softening point 

is 40 to 60 per cent for asphalts recovered from mixes treated 

for 8 hours at 325°F. Lower temperatures, however, show much 

less changes in softening point. There is 13 to 25 per cent 

increase after 24 hours and 18 to 30 per cent after 72 hours 

of heat treatmentaat 230°F. Asphalts recovered from mixes 

treated at 140°F for 72 hours show 9 to 33 per cent increase 

in softening point. Most of the asphalts recovered from as­

phaltic concrete mixes in which aggregate Y was used, show less 

increase in softening point than asphalts recovered from as­

phaltic concrete mixes with aggregate X. Comparative values 

of softening point for asphalts recovered from asphaltic con­

crete mixes "with X and Y aggregates but with same or similar 

asphalts", and "with same aggregate but with 30-40, 85-100, 

150-200 penetration grade asphalts," subjected to various 

treatments are shown in Figures 14, 15, 16, 17 and 18 respec­

tively. 

Per cent asphaltenes The asphaltene content for all 

the asphalts was obtained by selective solvent method (21) and 

the results obtained are given in Table 13 and shown graphic­

ally in Figure 19. Asphalts recovered from heat treated as­

phaltic concrete mixes at 325°F for 8 hours showed 60 to 120 

per cent increase in asphaltenes. Asphalts recovered from X-D 

and Y-D asphaltic concrete mixes showed the highest per cent 
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Table 12. Softening point of asphalts recovered from heat treated loose asphaltic 
concrete mixes 

Treat­ Treat­
ment ment Aggre­ Aggre­ Aggre­ Aggre­ Aggre­ Aggre­
temp. time gate X, gate Y, gate X, gate Y, gate X gate Y, 
op hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

0* 144 144 120 115 108 108 
— — 0b 151 151 136 126 118 114 

325 2 181 178 147 140 140 130 
325 4 199 190 170 157 154 147 
325 8 212 207 183 162 160 152 

230 4 153 160 136 126 122 114 
230 8 156 162 140 130 122 118 
230 16 160 165 147 131 127 122 
230 24 169 167 149 133 129 124 
230 72 185 176 156 136 133 131 

140 120 154 162 140 127 122 116 
140 240 160 165 149 129 124 116 
140 360 162 165 152 128 127 118 
140 720 163 167 159 133 127 120 

^Softening point of asphalts before mixing with aggregate. 

^Softening point of asphalts recovered from mixes just after mixing. 
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Table 13. Per cent asphaltenes of asphalts recovered from heat treated loose 
asphaltic concrete mixes 

Treat- Treat­
ment ment Aggre- Aggre- Aggre- Aggre- Aggre- Aggre-
temp. time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
°F hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

— — 0a 19.94 19.94 16.60 18.20 13.40 13.40 
mmmm 0b 23.20 24.20 22.80 20.70 18.20 17.10 

325 2 32.18 28.30 25.41 25.70 25.20 21.37 
325 4 32.85 29.70 27.99 25.80 25.66 24.85 
325 8 34.25 33.35 30.80 29.02 29.68 28.80 

230 4 23.36 26.20 22.70 22.96 19.51 17.90 
230 8 24.40 27.33 22.80 23.50 19.71 18.60 
230 16 26.90 27.80 23.28 24.10 20.00 20.21 
230 24 29.80 29.76 24.20 25.00 20.58 20.72 
230 72 32.37 32.70 26.08 26.10 21.65 22.10 

140 120 26.36 25.90 22.78 22.40 19.14 18.48 
140 240 27.74 26.20 23.20 22.43 20.20 18.98 
140 360 28.08 26.30 23.63 22.50 20.65 19.50 
140 720 28.80 27.88 24.25 24.30 21.00 19.50 

aPer cent asphaltenes of asphalts before mixing with aggregate. 

bper cent asphaltenes of asphalts recovered from mixes just after mixing. 



www.manaraa.com

66 

Heel triolmettl et 323»F 

Softening 

Treotment lima In heur» 

rteot treotment et 230*F 

7V«ofm»n» ttmt m hour* 

Heot treotment et 140*F 

Softening ijo, 

Softening 195, 

oggregete x 
Mi: «ith oogregote Y 

Softening 
po»nlf

#F 

îéo J}5 

H ,k—ik—ste—its-
TreotmeM time in heure 

Figure 13* Softening point of asp* alts 
recovered from heat treated asphaltic 
concrete mixes at 140, 230 and 324*F. 
showing softening point before mixing, 
after mixing and after heat treatments. 

Treelment time in heure 

Figure 14. Softening point of asphalt A recovered 
from asphaltic concrete mixes that have been sub­
jected to various forms of treatments. 

Heat treatment 
a t  325 e F.  

Heat treatment 
at 230*F. 

Heat treatment 
at 140'F. 

Ultra violet 
radiation treat­
ment. 

Oxidation at 
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Oxidation at 
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Figure 15. Softening point of asphalts B and C recov- Figure 16. Softening point of asphalt D recovered 
ered from asphaltic concrete mixes that have been from asphaltic concrete mixes that have been sub-
subjected to various forms of  treatments. jected to various forms of treatments. 

Treelment time In heure Treatment lime in heure 

Figure 17. Softening point of asphalts A, B, and D re­
covered from asphaltic concrete mixes with aggregate 
X that have been subjected to various forms of treat­
ments. 

Figure 18. Softening point of asphalts A, C, and D re­
covered from asphaltic concrete mixes with aggregate 
Y that have been subjected to various forms of treat­
ments. 
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increase in asphaltenes. This may be due to the fact that 

asphalt D, a 150-200 penetration grade has higher percentages 

of asphaltic resins and oily constituents which change to 

asphaltenes during oxidation or dehydrogenation reactions at 

higher temperatures. Asphalts recovered from mixes treated 

at 230°F for 24 and 72 hours showed 37 to 55 per cent and 43 

to 65 per cent increases respectively. Similar heat treat­

ment of asphaltic concrete mixes at 140°F showed 35 to 57 

per cent increase after 720 hours. The asphalts recovered 

from asphaltic concrete mixes with aggregate X showed higher 

per cent increases in asphaltene content than asphalts recov­

ered from asphaltic concrete mixes with aggregate Y. Lower 

absorption characteristics of aggregate X are considered re­

sponsible for higher asphaltene content. Details of the ef­

fect of aggregate characteristics on asphaltene content of 

recovered asphalts are discussed later. Comparative values of 

asphaltene content for recovered asphalts from asphaltic con­

crete mixes with "different aggregates and same or similar 

asphalts" and "same aggregate but with 30-40, 85-100, 150-200 

penetration grade asphalts" subjected to various treatments 

are shown in Figures 20, 21, 22, 23 and 24 respectively. 

Viscosity Viscosity values in poises for all the re­

covered asphalts were obtained by microviscometer and are 

presented in Table 14 and shown graphically in Figure 25. 
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Figure 23. Percent asphaltenes of asphalts A, B, and 
D recovered from asphaltic concrete mixes with aggre­
gate X that have been subjected to various forms of 
treatments. 

Figure 24. Percent asphaltenes of asphalts A, C, and 
D recovered from asphaltic concrete mixes with aggre­
gate Y that have been subjected to various forms of 
treatments. 
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Table 14. Viscosity in 10* poises of asphalts recovered from heat treated loose 
asphaltic concrete mixes 

Treat - Treat­
ment ment Aggre­ Aggre­ Aggre­ Aggre­ Aggre­ Aggre­
temp. time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
op. hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

0a 11.8 11.8 4.5 2.25 0.45 0.45 
—  —  0b 20.0 20.5 10.2 5.80 3.8 4.4 

325 2 —  —  — —  14.5 14.0 8.8 9.9 
325 4 •  —  20.0 20.5 18.5 14.3 
325 8 — - w  32.0 30.0 23.5 22.5 

230 4 32.0 20.8 11.0 6.6 3.8 4.6 
230 8 —  —  22.0 11.6 6.8 4.2 4.6 
230 16 •» •» 24.0 13.5 6.9 4.7 4.8 
230 24 — » — mm 15.0 7.4 7.2 4.9 
230 72 — — - - 17.0 9.2 8.6 7.8 

140 120 21.5 22.2 14.5 6.9 3.4 5.1 
140 240 24.0 23.5 17.0 7.4 4.1 5.8 
140 360 27.0 25.3 17.5 9.4 5.2 6.2 
140 720 29.0 27.4 20.0 11.0 5.5 6.4 

^Viscosity of asphalts before mixing with aggregate. 

^Viscosity of asphalts recovered from mixes just after mixing. 
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Recovered asphalts B, C, and D from heat treated asphaltic 

concrete mixes at 325°F for 8 hours showed viscosity increases 

about 8, 15 and 50 times the original viscosity. Determina­

tion of the viscosity of the asphalts recovered from asphaltic 

concrete mixes containing asphalt A, (30-40 penetration grade) 

and treated at 230 and 325°F, was very difficult. At lower 

temperatures, i.e. 230 and 140°F, the viscosity increases 

were comparatively small. Increases up to 5 fold, however 

were observed for asphalts recovered from the asphaltic con­

crete mixes made with B, and C asphalts and up to 15 times in 

asphalts recovered from asphaltic concrete mixes with asphalt 

D» after heat treatment at 230°F for 72 hours and at 140°F 

for 720 hours. Comparative values of viscosity of recovered 

asphalts from mixes "with different aggregates and same as­

phalt" and from mixes "with same aggregate but with 30-40, 

85-100, 150-200 penetration grade asphalts" subjected to vari­

ous treatments are shown in Figures 26, 27, 28, 29 and 30 

respectively. 

Characterizing factor Kinnaird's characterizing fac­

tor should remain unchanged for asphalts from the same stock 

and for the same asphalt after treatments which bring no 

change in the paraffinic constituents. The original asphalt 

when subjected to heat treatment showed that this factor re­

mains constant even after heat treatment at 230 and 325°F for 
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Figure 25. Viscosity of asphalts re­
covered from heat treated asphaltic 
concrete mixes at 140, 230 and 325*F. 
showing viscosity before mixing, after 
mixing and after heat treatments. 

Figure 26. Viscosity of asphalt A recovered from as­
phaltic concrete mixes that have been subjected to vari­
ous forms of treatments. 
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Figure 27. Viscosity of asphalts B and C recovered 
from asphaltic concrete mixes that have been subjected 
to various forms of treatments. 

Figure 29. Viscosity of asphalts A, B, and D recovered 
from asphaltic concrete mixes with aggregate X that have 
been subjected to various forms of treatments. 

Figure 28. Viscosity of asphalt D recovered from as­
phaltic concrete mixes that have been subjected to vari­
ous forms of treatments. 

Treatment lime to ftewre 

Figure 30. Viscosity of asphalts A, C, and D recovered 
from asphaltic concrete mixes with aggregate Y that have 
been subjected to various forms of treatments. 
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longer periods of time, within experimental accuracy. The 

values of the characterizing factor obtained from the nomo­

graph (34) for recovered asphalts are given in Table 15. These 

values are not constant and do not show any definite trend. 

The asphalts recovered from asphaltic concrete mixes prepared 

with asphalt A, B, C and D and treated at 325°P up to 8 hours, 

230°P up to 72 hours and 140°F up to 720 hours, have the 

characterizing factor values ranging between 12-20, 11-23, 

11-25, 17-33 and 12-18, 15-25, 15-18, 17-30 and 9-18, 15-23, 

15-22, 16-40 respectively. The characterizing factors for 

original asphalts A, B, C, and D are 18, 22, 20, and 27 re­

spectively. Such an inconsistency in values indicate that 

the asphalts after recovery do not necessarily remain in the 

same original physical and chemical state. Aggregate absorp­

tion, treatment conditions and recovery procedure affect the 

quality of the recovered asphalts. Dust content in recovered 

asphalts although negligible percentwide could contribute a 

lot in bringing changes in their physical characteristics. 

Penetration index The calculated values of the pene­

tration index are given in Table 16. Asphalts recovered from 

asphaltic concrete mixes prepared with asphalt A, after heat 

treatment for 4 hours or more at 325°P results in the pene­

tration index values greater than 1, thereby classifying 

these asphalts in the category referred to as "R type" by 
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Table 15. Characterizing factor for asphalts recovered from heat treated loose 
asphaltic concrete mixes 

Treat­ Treat­
ment ment Aggre­ Aggre­ Aggre­ Aggre­ Aggre­ Aggre­
temp. time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
op hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

0a 18 18 22 20 27 27 
— — 0b 17 17 25 20 30 25 

325 2 12 20 23 25 27 26 
325 4 11 15 17 25 29 33 
325 8 14 13 11 16 18 23 

230 4 15 15 22 15 22 20 
230 8 14 14 20 17 16 21 
230 16 14 13 20 16 20 22 
230 24 15 12 16 15 17 20 
230 72 14 15 15 13 18 22 

140 140 14 20 22 19 22 18 
140 140 12 16 17 15 23 16 
140 140 10 15 18 11 18 18 
140 140 9 13 20 11 16 21 

^Characterizing factor for asphalts before mixing with aggregate. 

^Characterizing factor for asphalts recovered from mixes just after mixing. 
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Table 16. Penetration index for asphalts recovered from heat treated loose 
asphaltic concrete mixes 

Treat- Treat­
ment ment Aggre- Aggre- Aggre- Aggre- Aggre- Aggre-
temp. time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
°F hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

— — 0a +0.544 +0.544 -0.425 -0.895 -0.614 -0.614 
0b +0.818 +0.818 +0.714 -0.757 +0.006 -0.534 

325 2 +1.650 +2.249 +1.033 +0.889 +1.144 +0.445 
325 4 +2.116 +2.249 +1.650 +1.815 +1.900 +1.815 
325 8 +2.864 +2.573 +1.489 +1.219 +1.334 +1.357 

230 4 +0.612 +1.033 +0.446 -0.666 -0.342 -0.871 
230 8 +0.714 +1.033 +0.478 -0.257 -0.718 -0.587 
230 16 +0.853 +1.070 +0.854 -0.314 -0.314 -0.285 
230 24 +1.411 +0.997 +0.570 -0.285 -0.314 -0.370 
230 72 +1.900 +1.411 +0.889 -0.285 -0.023 +0.067 

140 120 +0.612 +1.569 +0.067 -0.257 -0.260 -0.920 
140 240 +0.645 +1.372 +0.714 -0.561 -0.120 -0.969 
140 360 +0.478 +1.253 +0.924 -0.994 -0.397 -0.795 
140 720 +0.316 +1.106 1.489 -0.769 -0.507 -0.257 

^Penetration index for asphalts before mixing with aggregate. 

^Penetration index for asphalts recovered from mixes just after mixing. 
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Pfeiffer, which are characterized by slight brittleness. All 

the other asphalts recovered from mixes treated at 230 and 

140°F with a few exceptions have the penetration index value 

between -1 and 1 thereby classifying them in the category of 

normal asphalts, same as the original asphalts. The over-all 

penetration index data indicate that maintaining asphaltic 

concrete mixes at temperature over 300°F even for short peri­

ods of time, materially affect the physical and chemical 

properties of the asphalt. However treatment at lower tem­

peratures even for longer periods of time do not seem to 

change the asphalt classification based on the penetration 

index values. 

Asphalts recovered from asphaltic concrete mixes subjec­

ted to heat, ultraviolet radiation and oxidation treatments 

showed considerable changes in their physical and chemical 

properties. The per cent losses in penetration were very 

high. Asphalts recovered from heat treated mixes at 325°F 

for 8 hours brought the penetration of A, B, C and D asphalts 

down to 8, 10, 21 and 24-33 as compared to the original 

penetration of 34, 76, 86, and 140 respectively. Other proper­

ties such as softening point, per cent asphaltenes and vis­

cosity of these recovered asphalts were considerably changed. 

Per cent asphaltenes showed between 60 and 120 p^r cent in­

crease and viscosity 8 to 40 times the original values in 
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most of the asphalts recovered from the six types of asphaltic 

concrete mixes used in this investigation. Per cent change in 

the properties of recovered asphalts from mixes heat treated 

at 230 and 325°F for 4 and 8 hours are shown in Figures 56 

and 57 respectively. Mixes with softer asphalts showed com­

paratively higher per cent changes in recovered asphalts than 

the ones recovered from mixes with lower penetration asphalts. 

All these changes might be attributed to the following causes: 

1. Changes that might have occurred if the asphalts 

were heated alone in thin films for the same time as the mixes. 

2. Changes if any, which could have taken place during 

the recovery of the asphalt from asphaltic concrete mixes. 

3. Changes occurring during the mixing of aggregate and 

asphalts at mixing temperatures. 

4. Changes which are totally due to the treatment. 

Examination of the data shows that major parts of these 

changes in the properties of the recovered asphalts are due 

primarily to the treatment especially at high temperatures. 

When the asphaltic concrete mixes are subjected to different 

treatments, some constituents of asphalts are absorbed in the 

pores of the aggregate and the rest of the asphalt surround­

ing the mineral matter still remains open to the reactions 

started or accelerated by the treatment conditions. Vola­

tilization of the light molecular weight hydrocarbons or their 
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conversion to high molecular weight hydrocarbons by chemical 

reactions such as oxidation or dehydrogenation or polymeriza­

tion seems to be the possible causes which bring changes in 

the properties changes noted in the recovered asphalts. High 

temperature alone or with oxygen bring the highest possible 

changes in the recovered asphalts even when these mixes are 

treated for short periods of time. Treatment of these mixes 

at lower temperatures such as 230 and 140°F for short periods 

of time do not seem to bring appreciable changes in the proper­

ties of the recovered asphalts. However treatment at the same 

temperatures but for a long period of time seems to bring 

changes similar to the ones brought by high temperature 

treatment for shorter periods. 

Ultra-violet radiation treatment 

Exposure of the asphaltic concrete mixes to ultra-violet 

radiation affected the properties of recovered asphalts. The 

penetration, softening point, per cent asphaltenes and vis­

cosity, of these recovered asphalts are given in Tables 17, 

18, 19, and 20, and shown graphically in Figures 31, 32, 33 

and 34 respectively. Penetration of all the recovered as­

phalts showed up to 50 per cent loss during 24 hours of 

radiation treatment time. Softening point is not much af­

fected percentwise by the ultra-violet radiation treatment, 

however softening point increased with decrease in penetration 
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Table 17. Penetration of asphalts recovered from ultra-violet radiation treated 
loose asphaltic concrete mixes 

Type of 
Treat­ Aggre­ Aggre­ Aggre­ Aggre­ Aggre­ Aggre­

Type of ment gate X, gate Y, gate X, gate Y, gate X, gate Y, 
treatment time (hrs.) asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

0a 34 34 76 86 140 140 
— — Ob 28 28 53 59 98 103 

UVRC 4 25 28 39 56 83 93 
UVR 8 25 30 32 56 75 84 
UVR 16 22 26 36 53 77 74 
UVR 24 18 17 36 46 66 71 

^Penetration of asphalts before mixing with aggregate. 

^Penetration of asphalts recovered from mixes just after mixing. 

^Ultra-violet radiation. 
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Table 18. Softening point of asphalts recovered from ultra-violet radiation 
treated loose asphaltic concrete mixes 

Type of Treat- Aggre- Aggre- Aggre- Aggre- Aggre- Aggre-
treat- ment gate X, gate Y, gate X, gate Y, gate X, gate Y, 
ment time (hrs.) Asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

0a 144 144 120 115 108 108 
mmmm Ob 151 151 136 126 118 114 

UVRC 4 153 149 140 126 118 113 
UVR 8 153 151 138 128 120 116 
UVR 16 154 152 145 133 120 118 
UVR 24 159 158 144 133 122 122 

aSoftening point of asphalts before mixing with aggregate. 

^Softening point of asphalts recovered from mixes just after mixing 

cUltra-violet radiation. 



www.manaraa.com

Table 19. Per cent asphaltenes of asphalts recovered from ultra-violet radiation 
treated loose asphaltic concrete mixes 

Treat-
Type of ment Aggre- Aggre- Aggre- Aggre- Aggre- Aggre-
treat- time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
ment hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

•» — 0* 19.94 19.94 16.60 18.20 13.40 13.40 
* — 0b 23.20 24.20 22.80 20.70 18.20 17.10 
UVRC 4 24.50 24.51 22.76 21.20 18.65 17.50 
UVR 8 25.00 24.79 22.40 21.70 19.55 17.79 
UVR 16 25.13 24.83 22.88 22.39 19.82 18.76 
UVR 24 25.62 25.00 23.00 22.80 20.18 19.28 

aPer cent asphaltenes of asphalts before mixing with aggregate. 

bper cent asphaltenes of asphalts recovered from mixes just after mixing. 

cUltra-violet radiation. 



www.manaraa.com

Table 20. Viscosity in 106 poises of asphalts recovered from ultra-violet radia­
tion treated loose asphaltic concrete mixes 

Treat-
Type of ment Aggre- Aggre- Aggre- Aggre- Aggre- Aggre-
treat- time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
ment hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

°H 11.8 11.8 4.5 2.25 0.45 0.45 
0B 20.0 20.5 10.2 5.8 3.8 4.4 

UVRC 4 21.5 22.3 12.0 6.4 3.8 2.15 
UVR 8 22.0 26.0 12.5 8.3 3.6 2.24 
UVR 16 22.0 27.0 13.2 8.3 3.9 2.54 
UVR 24 25.5 27.0 13.5 8.8 4.3 3.0 

^Viscosity of asphalts before mixing with aggregate. 

^Viscosity of asphalts recovered from mixes just after mixing. 

^Ultra-violet radiation. 
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Figure 31. Penetration of as­
phalts recovered from asphaltic 
concrete mixes that have been 
subjected to ultra violet radiation 
treatment. 
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Figure 33. Percent asphaltenes ot 
asphalts recovered from asphaltic 
concrete mixes that have been sub­
jected to ultra violet radiation treat­
ment. 
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Figure 32. Softening point of as­
phalts recovered from asphaltic 
concrete mixes that have been 
subjected to ultra violet radiation 
treatment. 
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Figure 34. Viscosity of asphalts 
recovered from asphaltic concrete 
mixes that have been subjected to 
ultra violet radiation treatment. 
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Figure 35. Penetration of asphalts 
recovered from asphaltic concrete 
mixes that have been subjected to 
oxidation treatment at 230 and 325* 
F. 
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Figure 36. Softening point of as­
phalts recovered from asphaltic 
concrete mixes that have been 
subjected to oxidation treatment 
at 230 and 325'F. 
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Figure 37. Percent asphaltenes 
of asphalts recovered from as­
phaltic concrete mixes that have 
been subjected to oxidation treat­
ment at 230 and 325eF. 

Figure 38. Viscosity of asphalts 
recovered from asphaltic con­
crete mixes that have been sub­
jected to oxidation treatment at 
230 and 325'F. 
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value. The overall increase in softening point varied be­

tween 2 to 20 per cent. Asphalts recovered from asphaltic 

concrete mixes in which asphalt B and C of 85-100 penetra­

tion grade were used showed comparatively higher increase in 

the softening point than those in which asphalt A (30-40) and 

asphalt D (150-200) penetration grade were used. A maximum 

of 13 per cent increase in softening point was obtained in 

asphalts recovered from asphaltic concrete mixes in which as­

phalt D was used. The per cent increase in asphaltene con­

tent varied between 25 and 50 per cent after 24 hours of ultra­

violet radiation exposure time. The asphalt D mixes showed 

the greatest increase in asphaltenes. Asphalts recovered 

from asphaltic concrete mixes in which aggregate Y was used 

showed lower per cent increases in asphaltenes, softening 

point and less loss in penetration, than the asphalts recovered 

from asphaltic concrete mixes with aggregate X. Viscosity 

values show about 2 to 5 fold increase in all the asphalts, 

with highest increase in the asphalts recovered from asphaltic 

concrete mixes with asphalt D and lowest in asphalts recovered 

from asphaltic concrete mixes with asphalt A. The changes 

brought about by the ultra-violet radiation are coupled with 

heating at 140°P, as the radiation developed that much heat 

to raise the temperature of the mixture to 140°P. The charac­

terizing factor values for the recovered asphalts from mixes 

subjected to ultra-violet radiation treatment are given in 



www.manaraa.com

84 

Table 21. These values are not the same as for the original 

asphalts before mixing with the aggregate. These values show 

no consistency as far as their increase and decrease is con­

cerned. The penetration index values for all these asphalts 

are given in Table 22. These values vary between -1 and +1, 

thereby indicating that the Pfeiffer's classification of 

asphalts based on the penetration index remains unchanged 

even after 24 hours of ultra-violet radiation treatment. 

The over all data for the recovered asphalts from mixes 

subjected to ultra-violet radiation treatment for short 

periods of time does indicate that such radiation does not 

seem to have much detrimental effect on the properties of the 

recovered asphalts. However, long periods of ultra-violet radi­

ation treatment of mixes will materially affect the properties 

of the recovered asphalts. 

Oxidation treatment 

Asphalts recovered from oxidized asphaltic concrete 

mixes at 230 and 325°F showed great changes in their physical 

and chemical properties. The penetration, softening point, 

per cent asphaltenes and viscosity data is given in Tables 

23, 24, 25, 26 and shown graphically in Figures 35, 36, 37 

and 38 respectively. Asphalts recovered from mixes oxidized 

for four hours at 325°F showed 40 to 80 percent loss in pene­

tration, 30 to 60 percent increase in softening point, 60 to 
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Table 21. Characterizing factor for asphalts recovered from ultra-violet radiation 
treated loose asphaltic concrete mixes 

Treat-
Type of ment Aggre- Aggre- Aggre- Aggre- Aggre- Aggre-
treat- time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
meat hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

0* 18 18 22 20 27 27 
— — 0b 17 17 25 20 30 25 

UVRC 4 16 16 19 18 22 18 
UVR 8 16 19 13 19 20 19 
UVR 16 14 16 20 23 21 17 
UVR 24 12 11 20 18 19 22 

^Characterizing factor for asphalts before mixing with aggregate. 

^Characterizing factor for asphalts recovered from mixes just after mixing. 

^Ultra-violet radiation. 
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Table 22. Penetration index for asphalts recovered from ultra-violet radiation 
treated loose asphaltic concrete mixes 

Treat-
Type of ment Aggre- Aggre- Aggre- Aggre- Aggre- Aggre-
treat- time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
ment hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

• •» 0* +0.544 +0.544 -0.425 -0.895 -0.614 -0.614 
• mm Ob +0.818 +0.818 +0.714 -0.257 +0.006 -0.533 
UVRC 4 +0.784 +0.645 +0.445 -0.397 -0.506 -1.018 
UVR 8 +0.784 +0.961 +0.348 -0.113 -0.479 -0.795 
UVR 16 +0.612 +0.784 +0.784 +0.348 -0.397 -0.821 
UVR 24 +0.680 +0.479 +0.679 +0.037 -0.534 -0.341 

^Penetration index for asphalts before mixing with aggregate. 

^Penetration index for asphalts recovered from mixes just after mixing. 

^Ultra-violet radiation. 
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Table 23. Penetration of asphalts recovered from oxidized loose asphaltic con­
crete mixes 

Treat- Treat­
ment ment Aggre- Aggre- Aggre- Aggre- Aggre- Aggre-
temp. time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
°P hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

0a 34 34 76 86 140 140 
• w 0b 28 28 53 59 98 103 
325 1 26 24 56 41 79 43 
325 2 24 18 38 28 64 32 

325 4 21 14 28 27 39 27 

230 2 26 28 38 42 82 65 
230 4 22 24 35 40 68 48 
230 8 20 21 30 39 58 42 

^Penetration of asphalts before mixing with aggregate. 

^Penetration of asphalts recovered from mixes just after mixing. 
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Table 24. Softening point of asphalts recovered from oxidized loose asphaltic 
concrete mixes 

Treat- Treat-
ment ment Aggre­ Aggre­ Aggre­ Aggre­ Aggre­ Aggre­
temp. time gate X gate Y, gate X, gate Y, gate X, gate Y, 
op hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt 

0a 144 144 120 115 108 108 
WW 0b 151 151 136 126 118 114 

325 1 158 162 144 140 126 140 
325 2 161 183 159 164 134 152 
325 4 190 191 187 164 154 160 

230 2 158 156 142 136 120 125 
230 4 162 160 146 138 122 138 
230 8 170 164 160 142 128 140 

aSoftening point of asphalts before mixing with aggregate. 

^Softening point of asphalts recovered from mixes just after mixing. 
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Table 25. Per cent asphaltenes of asphalts recovered from oxidized loose asphaltic 
concrete mixes 

Oxida­ Treat­
tion ment Aggre­ Aggre­ Aggre­ Aggre­ Aggre­ Aggre­
temp. time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
op hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

0a 19.94 19.94 16.60 18.20 13.40 13.40 
WW 0b 23.20 24.20 22.80 20.70 18.20 17.10 

325 1 26.61 27.20 24.66 24.82 22.73 22.23 
325 2 28.69 30.38 26.59 26.19 23.89 27.86 
325 4 33.44 35.06 31.98 29.56 28.24 29.40 

230 2 24.43 25.20 23.71 23.93 20.50 20.74 
230 4 25.16 26.07 24.02 23.74 21.73 21.98 
230 8 26.29 27.53 24.47 25.31 22.16 22.43 

aPer cent asphaltenes of asphalt before mixing with aggregate. 

bper cent asphaltenes of asphalts recovered from mixes just after mixing. 
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Table 26. Viscosity in 106 poises of asphalts recovered from oxidized loose as­
phaltic concrete mixes 

Oxi­ Treat­
dation ment Aggre­ Aggre­ Aggre­ Aggre­ Aggre­ Aggre­
temp. time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
op hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

_ _  0a 11.80 11.80 4.50 2.25 0.45 0.45 
0b 20.00 20.50 10.20 5.80 3.80 4.40 

325 1 — — 14.30 10.00 4.80 5.10 
325 2 • — — «• 17.00 14.20 6.90 9.40 
325 4 - - — —  29.50 28.00 15.50 17.30 

230 2 13.00 8.70 5.90 6.20 
230 4 — — 16.00 12.00 8.62 9.60 
230 8 16.50 14.00 10.50 12.30 

^Viscosity of asphalts before mixing with aggregate. 

^Viscosity of asphalts recovered from mixes just after mixing. 
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120 per cent increase in per cent asphaltenes and up to 40 

fold increase in the viscosity values. Per cent changes in 

properties were comparatively much higher for asphalts recov­

ered from asphaltic concrete mixes oxidized at 325°F, than 

for asphalts recovered from the heat treated mixes at the 

same temperature and for the same duration. Asphalts recover­

ed from oxidized mixes at 230°F up to 8 hours were not too 

severe. Changes in physical and chemical properties of as­

phalts recovered from mixes oxidized at 230°F and heat treated 

at 230°F for same duration did not show much difference. 

Moreover these changes in properties were very low as compared 

to the changes in the properties of asphalts recovered from 

oxidized mixes at 325°F. Asphalts recovered from mixes with 

aggregate Y and oxidized at 325°F and mixes with aggregate Y 

and asphalt D oxidized at 230°F showed comparatively high 

changes in properties than the asphalts recovered from simi­

larly treated mixes with aggregate X. Whereas asphalts re­

covered from mixes with aggregate X and asphalts A, and B 

oxidized at 230°F showed greater changes than the asphalts 

recovered from similarly treated mixes with aggregate Y. 

Characterizing factor values for these asphalts are 

given in Table 27. These values are not the same as those of 

the original asphalts. No definite trend is shown by these 

values, indicating that the recovered asphalts are not the 
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Table 27. Characterizing factor for asphalts recovered from oxidized loose as-
phaltic concrete mixes 

Oxida- Treat-
tion ment Aggre- Aggre- Aggre- Aggre- Aggre- Aggre-
temp. time gate X, gate Y, gate X, gate Y gate X, gate Y, 
°P hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

325 
325 

325 

0a 
Ob 
1 
2 
4 

18 
17 
19 
18 
25 

18 
17 
19 
20 
17 

22 
25 
34 
30 

32 

20 
20 
20 
23 

22 

27 
30 
31 
31 

27 

27 
25 
22 
22 
20 

230 
230 
230 

2 
4 
8 

19 
16 
18 

20 
18 
16 

20 
21 
23 

18 
18 
21 

24 
20 
21 

22 
23 
22 

"Characterizing factor for asphalts before mixing with aggregate. 

^Characterizing factor for asphalts recovered from mixes just after mixing. 
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same chemically as the original asphalts. Penetration index 

values for these recovered asphalts are given in Table 28. 

Asphalts recovered from mixes oxidized at 325°F showed pene­

tration index values greater than 1 thereby classifying them 

in the category referred to as "R type" by Pfeiffer which 

are characterized by slight brittleness. All the asphalts 

recovered from mixes oxidized at 230°F for 8 hours except the 

ones recovered from mixes with asphalt A, have penetration 

index values between -1 and +1 and thus belong to the "normal 

type" class, same as the original asphalts. Asphalts recovered 

from mixes with asphalt A and oxidized at 230°F have penetra­

tion index values greater than 1 and thus belong to the "R 

type" class of Pfeiffer's classification. 

Stability and Cohesion of the Treated 
Asphaltic Concrete Mixes 

The essential properties required of bituminous paving 

mixtures comprise stability, durability, flexibility and 

workability during construction operation. A durable bituminous 

pavement must withstand detrimental effects of traffic, water, 

air and temperature. During this investigation various treat­

ments of asphaltic concrete mixes in an uncompacted state 

showed tremendous changes in the physical and chemical proper­

ties of the recovered asphalts. Such changes in asphalt are 

detrimental to the durability of the pavements. The stability 
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and cohesion of these treated asphaltic concrete mixes were 

therefore studied. 

Hveem stability 

Heat treatment Loose asphaltic concrete mixes were 

subjected to heat treatment at 325, 230 and 140°F, ultra­

violet radiation and oxidation treatments as mentioned under 

"treatment of mixes for stability and cohesion" on page 35. 

These treated mixes were heated to compaction temperatures, 

i.e. 250°F and specimens 4 inches in diameter and 2.5 inches 

in height were compacted by static load double plunger method. 

The Hveem stability values "S" and the lateral stress values 

corresponding to a vertical pressure of 400 PSi as used by 

the Iowa Highway Commission are given in Tables 29 and 30, 

respectively. The Hveem stability values "S" are also shown 

graphically in Figure 39. The specified stability "S" values 

for both medium and heavily traveled bituminous concrete 

pavements is 35 minimum (44). All the six asphaltic concrete 

mixes used in this study had stability values greater than 35. 

The Iowa Highway Commission requires that type A asphaltic 

concrete mixes should develop lateral pressure of less than 

60 psi, when tested in the Hveem stabilometer at 140°F. All 

the asphaltic concrete mixes used in this study satisfy such 

a requirement. A quick look at the stability data indicates 

a very high increase in stability due to various treatments. 
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Table 28. Penetration index for asphalts recovered from oxidized loose asphaltic 
concrete mixes 

Oxida­ Treat­
tion ment Aggre­ Aggre­ Aggre­ Aggre­ Aggre­ Aggre­
temp. time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
°F hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

0a +0.544 +0.544 -0.425 -0.895 -0.614 -0.614 
— 0b +0.818 +0.818 +0.714 -0.257 +0.006 -0.533 

325 1 1.30 +1.489 +1.774 +0.540 +0.545 +0.650 
325 2 1.41 +2.480 +2.250 +1.985 +2.111 +1.257 
325 4 3.27 +2.570 +3.686 +1.900 +1.860 +1.570 

230 2 +1.30 +1.295 +0.578 +0.159 -0.230 -0.141 
230 4 +1.30 +1.33 +0.819 +0.284 -0.450 +0.710 
230 8 +1.77 +1.37 +1.77 +0.650 -0.020 +0.610 

"Penetration index for asphalts before mixing with aggregate. 

^Penetration index for asphalts recovered from mixes just after mixing. 
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Table 29. Hveem stabilometer ••S" values for heat treated loose asphaltic concrete 
mixes 

Treat- Treat­
ment ment Aggre- Aggre- Aggre- Aggre- Aggre- Aggre-
temp. time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
op hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

— — 0 56 52 54 45 41 40 
325 2 57 56 60 52 48 47 
325 4 66 61 62 58 58 57 
325 8 72 71 69 62 65 60 

230 4 60 52 57 49 43 41 
230 8 64 54 60 51 44 47 
230 16 69 55 62 52 47 52 
230 24 70 56 63 56 53 55 
230 72 76 72 69 68 65 62 

140 120 63 53 58 50 52 40 
140 240 64 54 62 51 56 42 
140 360 67 56 65 52 56 43 
140 720 70 57 67 53 57 43 
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Table 30. Iowa Highway Commission stabilometer values for heat treated loose 
asphaltic concrete mixes 

Treat- Treat­
ment ment Aggre- Aggre- Aggre- Aggre- Aggre- Aggre-
temp. time gate X, gate Y, gate X, gate Y, gate x, gate Y, 
°F hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt 0 

mmm» 0 24 26 22 31 40 35 
325 2 22 20 16 24 30 24 
325 4 15 16 18 19 21 20 
325 8 9 10 12 17 14 15 

230 4 20 28 28 25 38 39 
230 8 15 17 17 26 34 31 
230 16 14 22 19 28 30 24 
230 24 13 19 17 23 27 20 
230 72 10 10 13 13 15 26 

140 120 14 22 20 27 25 30 
140 240 14 19 16 27 21 32 
140 360 15 20 17 34 20 34 
140 720 12 22 14 25 22 23 
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Asphaltic concrete mixes with asphalt D after 8 hours 

of heat treatment at 325°F attain the same stability as as­

phaltic concrete mixes with asphalt A, B, and C after two to 

four hours of heating at 325°F. Heat treatment of all the 

asphaltic concrete mixes in this study at 230°F for 72 hours 

resulted in similar stability at 8 hours at 325°F. The effect 

of the heat treatment of asphaltic concrete mixes at 140°F was 

very small on mixes with asphalt D, whereas mixes with asphalt 

A, B and C showed considerable increase in stability after 360 

and 720 hours. A part of this increase in stability of the 

mixes heat treated at 140°F may be due to the heating of the 

mixes to compaction temperatures of 250°F for preparing standard 

size specimens. Asphaltic concrete mixes with similar as­

phalts but with aggregate Y showed much lower stabilities than 

the mixes in which aggregate X was used. Comparative stability 

values for all the asphaltic concrete mixes "with different 

aggregates and same asphalt" and "same aggregate but with three 

penetration grades (30-40, 85-100, 150-200) of asphalts" sub­

jected to various treatments are shown in Figures 40, 41, 42 

and 43, 44 respectively. Increases in stability apparently re­

sult from the hardening of the asphalts in mixes. 

Heat treatment of these mixes at 325°F even at short 

periods of time showed tremendous increases in stability. 

During heating at higher temperatures the increase in aggregate 
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Figure 39. Hveem stability of asphal­
tic concrete mixes after heat treatment 
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Figure 40. Hveem stability of asphaltic concrete mixes 
with asphalt A after various forms of treatments. 
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selective absorption, volatilization of some asphaltic con­

stituents and other possible chemical reactions resulted in 

the increase in viscosity, decrease in film thickness and bet­

ter bond between aggregate particles. All these changes in 

asphaltic concrete mixes resulted in higher stability values. 

These values were very high for mixes treated at 325°F even 

for short periods of time. The above mentioned reactions or 

changes were not very severe at lower temperatures such as 230 

and 140°F for short periods of time. However long periods of 

treatment seems to bring changes similar to higher temperature 

treatments for shorter time. Stability values for heat treated 

mixes at 230 and 325°F for 4 hours and at 230 and 325°F for 8 

hours are shown in Figures 56 and 57 respectively. 

Ultra-violet radiation treatment Loose asphaltic con­

crete mixes subjected to ultra-violet radiation up to 24 hours 

did not show much changes in stability. Hveem stability "S" 

values and the one used by Iowa Highway Commission are given 

in Tables 31 and 32 respectively. Hveem stability values"S" 

are shown graphically in Figure 45. Very slight increases 

in stability is indicated by mixtures in which aggregate X was 

used whereas mixes with aggregate Y showed slight decreases 

in stability values. The effect of the ultra-violet radiation 

on the ductility of asphalts was studied by Vallerga, Moni-

smith and Granthem (68). Some asphalts showed tremendous in­

creases while others considerable losses for similar treatment 



www.manaraa.com

Table 31. Hveem stabilometer "S" values for ultra-violet radiation treated loose 
asphaltic concrete mixes 

Type Treat­
treat­ ment Aggre­ Aggre­ Aggre­ Aggre­ Aggre­ Aggre­
ment time gate X, gate Y, gate X, gate Y, gate X, gate Y, 

hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

None 0 56 52 54 45 41 40 
UVRa 4 56 52 58 46 39 39 
UVR 8 62 53 62 46 45 40 
UVR 16 62 54 58 45 48 41 
UVR 24 66 54 58 45 48 40 

aUltra-violet radiation. 

Table 32. Iowa Highway Commission stabilometer values for ultra-violet radiation 
treated loose asphaltic concrete mixes 

Type Treat­
treat­ ment Aggre­ Aggre­ Aggre­ Aggre­ Aggre­ Aggre­
ment time gate X, gate Y, gate X, gate Y, gate X, gate Y, 

hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

None 0 24 26 22 31 40 35 
UVRa 4 21 23 21 31 36 36 
UVR 8 17 24 18 40 25 36 
UVR 16 14 23 20 32 27 35 
UVR 24 28 26 17 29 23 40 

aUltra-violet radiation. 
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condition; no definite reason was forwarded to account for it. 

The ultra-violet radiation effect on the stability of the as­

phaltic concrete mixtures used in this study was very small, 

at the same time no serious detrimental effect was observed. 

Some abnormalities do exist in the data, which could be either 

due to the ultra-violet radiation or experimental error or 

heating of the treated mixes to compaction temperatures. It 

is concluded therefore that such radiation does not seem to 

play any major role in bringing changes in the stability values 

of the treated asphaltic concrete mixes. 

Oxidation treatment Oxidation studies show a consider­

able increase in the stability values of the asphaltic con­

crete mixtures. Very short periods of oxidation resulted in 

very high stability values. The stability values "s" and the 

one used by Iowa Highway Commission for all mixes oxidized at 

230 and 325°F are given in Tables 33 and 34 and the Hveem 

stability value "s" are shown graphically in Figure 46. The 

high increase in stability value does indicate that high tem­

peratures accelerate the oxidation or de-hydrogénation reac­

tions. Stability values for mixes oxidized at 230°F for 8 

hours are the same as the one obtained for same mixes after 

72 hours of heat treatment alone at the same temperature. Sta­

bility values of mixes after heat treatment at 325°F, for 8 

hours are pretty much the same as after 2 to 4 hours of oxida-
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Table 33. Hveem stabilometer "S*' values for oxidized loose asphaltic concrete 
mixes 

Oxida- Treat-
tion ment Aggre­ Aggre­ Aggre­ Aggre­ Aggre­ Aggre­
temp. time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
op hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt 

0 56 52 54 45 41 40 
325 1 67 60 65 57 50 47 
325 2 72 72 72 66 56 50 
325 4 80 74 72 70 68 62 

230 2 60 59 61 56 41 41 
230 4 70 67 62 59 46 45 
230 8 72 70 64 62 52 50 
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Table 34. Iowa Highway Commission stabilometer values for oxidized loose as­
phaltic concrete mixes 

Oxida­ Treat­
tion ment Aggre­ Aggre­ Aggre­ Aggre­ Aggre­ Aggre­
temp. time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
op hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt 0 

0 24 26 22 31 40 35 
325 1 21 22 11 24 28 23 
325 2 8 9 9 10 28 14 
325 4 6 9 9 14 12 22 

230 2 21 24 18 22 44 38 
230 4 8 11 16 13 31 29 
230 8 8 12 18 23 37 24 
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tion at 325°F. Higher increases in stability values of these 

oxidized asphaltic concrete mixes are due to oxidation of the 

absorbed oily constituents of asphalt in the pores of aggre­

gate and also due to severe oxidation of the asphalt film sur­

rounding the mineral matter, which in turn lowers the viscosity 

of asphalt and increases bonding between mineral matter. High 

temperature accelerates these oxidation reactions and there­

fore the stabilities of mixes oxidized at higher temperature 

will be greater than the mixes oxidized at low temperatures. 

Hveem cohesion 

Heat treatment Hveem cohesion values were obtained 

on the same specimens as used for the stability test. The re­

sults so obtained are given in Table 35 and shown graphically 

in Figure 47. The minimum cohesion values specified both for 

medium and heavily traveled bituminous concrete pavements is 

50. All the six asphaltic concrete mixes used in this study 

had cohesion values greater than 50. The increase in cohesion 

values after heat treatment of the asphaltic concrete mixes 

at 325°F for 8 hours is 90 to 140 per cent in mixtures with 

aggregate Y and 40 to 50 per cent in mixes with aggregate X. 

The high cohesion values for heat treated mixes does not nec­

essarily mean better durability. However, it does indicate 

the hardening of the asphalts in these mixes. As mentioned 

previously the asphalts recovered from mixes heat treated at 
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Table 35. Hveem cohesiometer ,,C" values for heat treated loose asphaltic 
concrete mixes 

Treat- Treat­
ment ment Aggre- Aggre- Aggre- Aggre- Aggre- Aggre-
temp. time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
°F hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

— — 0 354 261 319 230 257 166 
325 2 460 330 393 340 382 343 
325 4 503 433 440 380 434 352 
325 8 540 516 450 440 384 402 
325 

230 4 420 272 375 208 264 187 
230 8 480 350 386 242 280 210 
230 16 534 353 400 277 298 245 
230 24 550 366 422 291 308 275 
230 72 590 433 414 310 347 282 

140 120 362 286 341 240 262 168 
140 240 410 348 388 263 259 181 
140 360 411 372 396 285 268 192 
140 720 404 392 397 291 276 214 
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325°F were very hard and some even showed the sign of slight 

brittleness. However no sign of brittleness was observed 

during the testing of cohesion for the compacted specimens. 

Heat treatment of asphaltic concrete mixes at 230°F for 72 

hours and at 140°F for 720 hours did show increases in co­

hesion values 30 to 55 per cent and 7 to 25 per cent for mixes 

with aggregate X and 35 to 70 per cent and 25 to 42 per cent 

for mixes with aggregate Y respectively. Cohesion values for 

mixes "with different aggregates and with the same asphalt" 

and "same aggregate but with 30 to 40, 85 to 100 and 150 to 

200 penetration grade asphalt" subjected to various treatments 

are shown in Figures 48, 49, 50 and 51, 52 respectively. In­

creases in stability values are due to the hardening of as­

phalts and better bond between mineral matter as discussed 

under stability of heat treated mixes. Cohesion values for 

heat treated mixes at 230 and 325°F for 4 and 8 hours are shown 

in Figures 56 and 57 respectively. 

Ultra-violet radiation treatment Cohesion data for 

asphaltic concrete mixes subjected to ultra-violet radiation 

treatment is given in Table 36 and shown graphically in Figure 

53. Small increases in the cohesion values of asphaltic con­

crete mixes with asphalts A, B and C were observed after 8 to 

16 hours of ultra-violet radiation treatment. However 24 

hours of such treatment for the same mixes showed slight de-



www.manaraa.com

Table 36. Hveem cohesiometer "C" values for ultra-violet radiation treated 
loose asphaltic concrete mixes 

Type Treat-
treat- ment Aggre- Aggre- Aggre- Aggre- Aggre- Aggre-
ment time gate X, gate Y, gate X, gate Y, gate X, gate Y, 

hrs. asphalt A asphalt A asphalt B asphalt C asphalt D asphalt D 

None 0 354 261 319 230 257 166 

UVR* 4 381 312 414 231 234 150 

UVR 8 394 343 361 213 178 162 

UVR 16 340 278 369 231 182 180 

UVR 24 337 317 344 219 163 183 

aUltra-violet radiation. 
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Figure 49. Hveem cohesion of asphaltic concrete mixes 
with asphalt A after various forms of treatments. 

Figure 50. Hveem cohesion of asphaltic concrete mixes 
with asphalt D after various forms of treatments. 

Aephelt * 

Aephelt 0 

eoheeiomeier 

>00 

-  8  — ,  

— - Aephelt A 
Aephelt C 

— — Aephelt 0 

Hveem 
cobeslomeier 

Cvolee 

100 200 400 

Treatment time In howre 

10 20 40 (04 

Treatment time In heure 

Figure 51. Hveem cohesion of asphaltic concrete mixes Figure 52. Hveem cohesion of asphaltic concrete mixes 
containing aggregate X after various forms of treatments. containing aggregate Y after various forms of treatments. 

Ortaoti t t» ef 230*F 

cohewometef **4^ 

Ultra violet retflefiew 

: 1 —n—n—Î4 
Treatment time m hour» 

Figure 53. Hveem cohesion of as­
phaltic concrete mixes after ultra 
violet radiation treatment. 

eoheeiomeier 100 

caieeiem^tei- 300 

Treatment time m hours 

Oeidotion ot 325* F 

fim* *» hovr* 

Figure 54. Hveem cohesion of 
asphaltic concrete mixes after 
oxidation treatment at 230 and 
325*F. 



www.manaraa.com

110 

creases in cohesion value. Asphaltic concrete mixes with as­

phalt D and aggregate X showed steady decrease in cohesion 

values but the reverse was true for mixes with aggregate Y 

and asphalt D. The reason of this slight increase and de­

crease of the cohesion values is not quite clear. The overall 

data show at least that such a treatment does not have any se­

vere detrimental effect on cohesion values of the treated as­

phaltic concrete mixes. 

Oxidation treatment Cohesion values for asphaltic 

concrete mixes subjected to oxidation treatment at 325 and 

230°F are given in Table 37 and shown graphically in Figure 54. 

Asphaltic concrete mixes with asphalt D and aggregate Y showed 

the highest increase of 105 per cent in cohesion values after 

4 hours of oxidation at 325°F. Figures 48, 49 and 50 show 

that all mixes with aggregate Y have higher percent increases 

in cohesion values than mixes with aggregate X, after similar 

oxidation treatments. Oxidation at 230°F does not show too 

severe effect on the cohesion values of the mixes. However 8 

hours of oxidation of all mixes at 230°F did show 10 to 40 per 

cent increase in cohesion values. Cohesion values for all six 

asphaltic concrete mixes oxidized at 325 and 230°F were higher 

than the cohesion values for same mixes after heat treatment 

at the same temperatures and for the same time. Similar 

changes or reactions as discussed under the "Stability of 
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Table 37. Hveem cohesiometer "C" values for oxidized loose asphaltic concrete 
mixes 

Oxida- Treat-
tion ment Aggre- Aggre- Aggre- Aggre- Aggre- Aggre-
temp. time gate X, gate Y, gate X, gate Y, gate X, gate Y, 
°P hrs. asphalt A asphalt A asphalt B asphalt C asphalt 0 asphalt D 

0 354 261 319 230 257 166 
325 1 397 355 420 274 269 180 
325 2 498 407 409 380 408 276 
325 4 574 449 546 425 485 340 

230 2 469 310 380 264 269 170 
230 4 516 337 399 288 328 169 
230 8 499 367 434 321 294 183 
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heat treated and oxidized mixes" result in high cohesion values 

for oxidized mixes. 

Effect of Aggregate Type on Physical Properties 
of Recovered Asphalts and Asphaltic Concrete 

Mixes 

Two aggregates, namely X and Y, were used in this study. 

Aggregate Y is much more absorptive in character than aggre­

gate X. Type of the aggregate has shown considerable effect 

on the physical properties of the asphaltic mixtures and the 

asphalts recovered from them. Aggregate Y is believed to ab­

sorb some of the oily constituents of asphalt from the films 

of binder surrounding the mineral matter. This type of ab­

sorption is referred as selective absorption. Such an absorp­

tion therefore changes the chemical composition of the overall 

asphalt film covering the aggregate. Absorption of the oily 

constituents of asphalt by the mineral matter therefore reduces 

the available reactants for oxidation or dehydrogenation re­

actions, in the films of asphalt surrounding the aggregate. 

Oily constituents are known to change to asphaltenes and as­

phaltic resins due to oxidation or dehydrogenation reactions 

and asphaltic resins further changes to asphaltenes by further 

action. During the recovery of the asphalt from these asphaltic 

concrete mixes these absorbed constituents of asphalt are de-

sorbed by the solvent. It is therefore the absorptive charac­

teristic of the aggregate Y which results in the comparatively 
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less loss in penetration and less increase in softening point, 

per cent asphaltenes and viscosity of the asphalts recovered 

from treated asphaltic concrete mixes with aggregate Y than 

the asphalts recovered from similarly treated asphaltic con­

crete mixes with aggregate X. Such comparisons are particular­

ly more significant in the cases where the asphaltic concrete 

mixes are heat treated at temperatures such as 325°F or higher. 

High temperatures accelerate oxidation or dehydrogenation re­

actions and materially increase absorption of asphalt consti­

tuents by porous aggregates. However the asphalts recovered 

from asphaltic concrete mixes with aggregate Y oxidized at 325<T 

show higher percent losses in penetration, higher percent in­

creases in the softening point, percent asphaltenes and vis­

cosity than the asphalts recovered from the mixes with aggre­

gate X, after similar treatments. Higher porosity of the ag­

gregate Y results in severe oxidation of the absorbed oily 

constituents of asphalt during oxidation of the mixes at 325°F 

due to the presence of the oxygen in pores of the mineral 

matter; Thus resulting in higher percent changes in the physi­

cal and chemical properties of recovered asphalts. 

Stability and cohesion values of treated asphaltic con­

crete mixes were similarly affected by the absorptive charac­

ter of the aggregates. Absorption of the asphalt in the pores 

of the aggregates reduces the film thickness of the asphalt, 
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increases the viscosity and thereby increases the bonding 

between the aggregate particles. However such effects as re­

duction in the film thickness due to the absorption of oily 

constituents of asphalt from asphalt films results, in the 

severe oxidation or dehydrogenation of the remaining asphalt 

constituents, especially when asphaltic concrete mixes are 

subjected to heat and oxidation at higher temperatures. All 

this results in the hardening of the asphalt in the asphaltic 

concrete mixtures. It is due to this fact that percent in­

creases in stability and cohesion values in most of the treated 

asphaltic concrete mixes (especially after treatment at high 

temperatures) with aggregate Y were comparatively higher than 

for the asphaltic concrete mixtures with aggregate X. Higher 

temperature treatments, heat or oxidation of asphaltic con­

crete mixes result in higher percent increase of stability and 

cohesion values. 



www.manaraa.com

116 

SUMMARY AND CONCLUSIONS 

In this investigation asphalts and loose asphaltic con­

crete mixes were subjected to heat, ultra-violet radiation and 

oxidation treatments for various temperatures and durations. 

The effect of heat on original asphalts and asphalts recovered 

from treated asphaltic concrete mixes by modified Abson meth­

od was studied. Physical and chemical changes due to treat­

ments were judged on the basis of the penetration, softening 

point, per cent asphaltenes, viscosity, characterizing factor 

and the penetration index results. Stability and cohesion of 

the treated asphaltic concrete mixes were obtained by Hveem 

stabilometer and cohesiometer. Following is a summary of the 

important results obtained with limited testing, in this ex­

perimental study and the conclusions drawn therefrom: 

1. Asphalts when heated do show considerable changes in 

their physical and chemical properties. These changes become 

much greater when heated at high temperatures and for long 

periods of time. Asphalts of 85-100 and 150-200 penetration 

grades showed similar changes in penetration, softening points 

and per cent asphaltenes. Asphalt of low penetration grade 

(30-40) showed much less changes in the properties than the 

high penetration asphalts. Viscosity increases were the high­

est in asphalts with high penetration and lowest in asphalt 

with low penetration. 
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2. Characterizing factor for all these heat treated as­

phalts did not show much deviation from the original values 

for the same asphalts before heat treatment, consequently it 

appears that no change occurs in the paraffinic constituents 

of asphalts by heating up to 325°F for periods as long as 72 

hours. 

3. Penetration index values for all these asphalts heat 

treated at 230 and 325°P for various time intervals vary be­

tween -1 and +1, thereby classifying these asphalts in the 

category of "normal asphalts" which is the same, as for the 

original asphalts prior to heat treatment. 

4. Asphalts recovered from asphaltic concrete mixes sub­

jected to heat treatment showed great changes in the physical 

and chemical properties. These changes become more severe in 

asphalts recovered from mixes treated at higher temperatures 

and for longer periods of time. 

5. All the asphalts recovered from heat treated mixes at 

325°F for 8 hours showed 75 to 85 per cent losses in penetra­

tion. Heat treatment at lower temperatures but for long peri­

ods of time seems to produce similar results. 

6. Per cent changes in penetration, softening point, per 

cent asphaltenes and viscosity of the recovered asphalts from 

heat treated loose asphaltic concrete mixes increases with in­

crease in treatment time and temperatures. 

7. Heat treatment of asphaltic concrete mixes at 325°F 
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for 2 to 3 hours, at 230°F for 24 to 72 hours and at 140°F for 

about 700 hours seems to produce similar effect as far as the 

per cent loss in penetration of the recovered asphalts is con­

cerned. 

8. Asphalts recovered from asphaltic concrete mixes do 

not seem to represent the original asphalts according to 

Kinnaird's characterizing factor values. Type of aggregate 

and asphalt used in these mixes, treatment conditions, recov­

ery method and small quantities of mineral matter left in re­

covered asphalts seem to affect the characterizing factor 

values. 

9. Recovered asphalts from all the treated asphaltic con­

crete mixes except the ones subjected to heat treatment and 

oxidation at 325°F for 4 or more hours have penetration index 

values between -1 and +1, thereby classifying these asphalts 

in the category of the "normal asphalts" which is the same as 

for the original asphalts prior to mixing with the aggregate. 

Whereas the asphalts recovered from mixes heat treated or oxi­

dized at 325°F for 4 or more hours have penetration index 

values greater than 1, which classify them in the "R type" 

class of Pfeiffer's classification, which are characterized 

by slight brittleness. 

10. Ultra-violet radiation treatment does not show much 

effect on the physical and chemical properties of recovered 

asphalts from the asphaltic concrete mixes subjected to such 
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radiation for short periods of time. However long treatment 

periods seem to affect the properties of recovered asphalts 

considerably. 

11. Oxidation of asphaltic concrete mixes at 325°P show 

much higher changes in physical and chemical properties of 

recovered asphalts than the asphalts recovered from heat 

treated mixes at 325°F for the same period of time. Although 

oxidation and heat treatment of asphaltic concrete mixes at 

230°F showed similar changes in physical and chemical proper­

ties of the recovered asphalts A, B and C, but recovered as­

phalts D from oxidized mixes underwent much higher changes 

than the corresponding asphalts recovered from heat treated 

mixes. 

12. The changes in properties of the recovered asphalts 

and asphaltic concrete mixes brought about by heating and oxi­

dation treatments of these mixes are materially affected by 

the physical characteristics of the aggregate used in those 

mixes. 

13. All the asphalts recovered from heat treated asphalt­

ic concrete mixes with high absorption aggregate Y showed less 

loss in penetration and smaller increase in softening point, 

per cent asphaltenes and viscosity than the asphalts recovered 

from the asphaltic concrete mixes with aggregate X. Such dif­

ferences are due to the higher absorption of the aggregate Y 



www.manaraa.com

120 

than aggregate X. However the reverse was true for most of 

the asphalts recovered from oxidized asphaltic concrete mixes. 

14. Asphaltic concrete mixes subjected to various treat­

ments in loose state showed increases in stability and cohesion 

values. Such increases were very high in mixes treated at 

high temperatures and for long periods of time. 

15. Asphaltic concrete mixes made with high penetration 

asphalts showed similar stability and cohesion values as the 

low penetration asphalt after 2 to 4 hours of heat and oxida­

tion treatments at 325°F. However much longer periods of 

treatment at 230°F are needed to attain the same cohesion and 

stability values as for the asphaltic concrete mixes with low 

penetration asphalt. 

16. Higher per cent increases were obtained in stability 

and cohesion values in almost all the asphaltic concrete mixes 

with aggregate Y than the asphaltic concrete mixes with ag­

gregate X. 

17. Oxidation of all the asphaltic concrete mixes at 

230 and 325°F showed greater stability and cohesion values 

than the same mixes subjected to heat treatment alone at the 

same temperatures and for same periods of time. 

18. Although the penetration values of some recovered 

asphalts were extremely low and the appearance of the corres­

ponding mixes were very dull and dry no sign of brittleness 

was observed during cohesion testing of compacted specimens 
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from such mixes. These mixes on the other hand gave very 

high cohesion values. 

19. Although treatment of asphaltic concrete mixes at 

temperatures such as 230 and 140°F for shorter periods of time 

brought changes in the physical characteristics of the re­

covered asphalts, these do not appear to affect the physical 

characteristics of the mixes materially. 
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